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Preface

Electrical impedance tomography (EIT) seeks to recover the electrical con-
ductivity distribution inside a body from measurements of current flows and
voltages on its surface. The vast and growing literature reflects many possible
applications of EIT techniques, e.g., for medical diagnosis or nondestructive
evaluation of materials.

Since the underlying inverse problem is nonlinear and severely ill-posed,
general purpose EIT reconstruction techniques are likely to fail. Therefore it
is generally advisable to incorporate a-priori knowledge about the unknown
conductivity. One such type of knowledge could be that the body consists
of a smooth background containing a number of unknown small inclusions
with a significantly different conductivity. This situation arises for example
in breast cancer imaging or mine detection. In this case EIT seeks to recover
the unknown inclusions. Due to the smallness of the inclusions the associ-
ated voltage potentials measured on the surface of the body are very close
to the potentials corresponding to the medium without inclusion. So unless
one knows exactly what patterns to look for, noise will largely dominate the
information contained in the measured data. Furthermore, in applications it
is often not necessary to reconstruct the precise values of the conductivity or
geometry of the inclusions. The information of real interest is their positions
and size.

The main purpose of this book is to describe fresh and promising tech-
niques for the reconstruction of small inclusions from boundary measurements
in a readable and informative form. These techniques rely on accurate asymp-
totic expansions of the boundary perturbations due to the presence of the
inclusions. The general approach we will take to derive these asymptotic ex-
pansions is based on layer potential techniques. This allows us to handle inclu-
sions with rough boundaries. In the course of deriving our asymptotic expan-
sions, we introduce new concepts of generalized polarization tensors (GPT’s).
GPT’s contain significant information on the inclusion which will be investi-
gated. We then apply the asymptotic expansions for designing efficient direct
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reconstruction algorithms to detect the location, size, and/or orientation of
the unknown inclusions.

This book would not have been possible without the collaborations and
the conversations with a number of outstanding colleagues. We have not only
profited from generous sharing of their ideas, insights and enthusiasm, but also
from their friendship, support and encouragement. We feel specially indebted
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manuscript and our students Ekaterina Iakovleva, Eunjoo Kim, Mikyoung
Lim, Kaouther Louati, Sofiane Soussi, Karim Touibi, and Habib Zribi for pro-
viding us with numerical examples or/and carefully reading our manuscript.
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1

Introduction

Electrical Impedance Tomography (EIT) is designed to produce, efficiently
and accurately, images of the conductivity distribution inside a body from
measurements of current flows and voltages on the body’s surface. Due to
several merits of EIT such as safety, low cost, real time monitoring, EIT has
received considerable attention for the last two decades; see for instance the
review papers [255, 256, 78, 58] and the extensive list of references therein.
The vast and growing literature reflects many possible applications of EIT,
e.g., for medical diagnosis or nondestructive evaluation of materials. In medi-
cal applications, EIT could potentially be used for monitoring lung problems,
noninvasive monitoring of heart function and blood flow, screening for breast
and prostate cancer, and improving electrocardiograms and electroencephalo-
grams [78, 37, 82, 83, 163, 164, 143].

However, insensitivity of boundary measurements to any change of inner-
body conductivity values has hampered EIT from providing accurate static
conductivity images [4]. In practice captured current-to-voltage pairs must be
limited by the number of electrodes attached on the surface of the body that
confine the resolution of the image [153, 101]. We can definitely increase the
resolution of the conductivity image by increasing the number of electrodes.
However, it should be noticed that beyond a certain level, increasing the
number of electrodes may not help in producing a better image for the inner-
region of the body if we take into account the inevitable noise in measurements
and the inherent insensitivity mentioned before.

In its most general form EIT is severely ill-posed and nonlinear. These
major and fundamental difficulties can be understood by means of a mean
value type theorem in elliptic partial differential equations. The value of the
voltage potential at each point inside the region can be expressed as a weighted
average of its neighborhood potential where the weight is determined by the
conductivity distribution. In this weighted averaging way, the conductivity
distribution is conveyed to the boundary potential. Therefore, the boundary
data is entangled in the global structure of the conductivity distribution in
a highly nonlinear way. This is the main obstacle to finding non-iterative
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2 1 Introduction

reconstruction algorithms with limited data. If, however, in advance we have
additional structural information about the medium, then we may be able to
determine specific features about the conductivity distribution with a good
resolution. One such type of knowledge could be that the body consists of a
smooth background containing a number of unknown small inclusions with a
significantly different conductivity. This situation arises for example in breast
and prostate cancer imaging [37, 82, 83, 163, 164, 26, 243] or mine detection. In
this case EIT seeks to recover the unknown inclusions. Due to the smallness
of the inclusions the associated voltage potentials measured on the surface
of the body are very close to the potentials corresponding to the medium
without inclusions. So unless one knows exactly what patterns to look for,
noise will largely dominate the information contained in the measured data.
Furthermore, in applications it is often not necessary to reconstruct the precise
values of the conductivity or the geometry of the inclusions. The information
of real interest is their positions and size.

Taking advantage of the smallness of the inclusions, many promising recon-
struction techniques have been designed since the pioneering works by Fried-
man and Vogelius [120, 121, 123]. It turns out that the method of asymptotic
expansions of small volume inclusions provides a useful framework to recon-
struct the location and geometric features of the inclusions in a stable way,
even for moderately noisy data [73, 53, 28, 64, 191, 39, 261].

In this book we have made an attempt to describe these new and promis-
ing techniques for the reconstruction of small inclusions from boundary mea-
surements in a readable and informative form. As we said, these techniques
rely on accurate asymptotic expansions of the boundary perturbations due
to the presence of the inclusions. The general approach we will take in this
book is as follows. Based on layer potential techniques and decomposition
formulae like the one due to Kang and Seo in [168] for the conductivity
problem, we first derive complete asymptotic expansions. This allows us to
handle inclusions with rough boundaries and those with extreme conductiv-
ities. In the course of deriving our asymptotic expansions, we introduce new
concepts of generalized polarization tensors (GPT’s). These concepts gen-
eralize those of classical Pólya–Szegö polarization tensors which have been
extensively studied in the literature by many authors for various purposes
[72, 24, 73, 212, 104, 105, 200, 198, 123, 180, 94, 186, 231, 232, 241, 95]. The
GPT’s appear naturally in higher-order asymptotics of the steady-state volt-
age potentials under the perturbation of conductor by conductivity inclusions
of small diameter. GPT’s contain significant information on the inclusion that
will be investigated. We then apply the asymptotic expansions for designing
efficient direct reconstruction algorithms to detect the location, size, and/or
orientation of the unknown inclusions.

The book is intended to be self-contained. However, a certain familiarity
with layer potential techniques is required. The book is divided into three
parts that can be read independently.
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Part I consists of four chapters dealing with the conductivity problem. It
is organized as follows. In Chap. 2, we introduce the main tools for studying
the conductivity problem and collect some notation and preliminary results
regarding layer potentials. In Chap. 3, we introduce the GPT’s associated
with a Lipschitz bounded domain B and a conductivity 0 < k �= 1 < +∞. We
prove that the knowledge of all the GPT’s uniquely determines the domain
B and the conductivity k. We also provide important symmetric properties
and positivity of the GPT’s and derive isoperimetric inequalities satisfied by
the tensor elements of the GPT’s. These relations can be used to find bounds
on the weighted volume. In Chap. 4, we provide a rigorous derivation of high-
order terms in the asymptotic expansion of the output voltage potentials.
The proofs of our asymptotic expansions are radically different from the ones
in [123, 73, 259]. What makes the proofs particularly original and elegant is
that the rigorous derivation of high-order terms follows almost immediately.
In Chap. 5, we apply our accurate asymptotic formula for the purpose of
identifying the location and certain properties of the shape of the conductivity
inclusions. By improving the algorithm of Kwon, Seo, and Yoon [191] we first
design two real-time algorithms with good resolution and accuracy. We then
describe the variational algorithm introduced in [28] and review the interesting
approach proposed by Brühl, Hanke, and Vogelius [64]. Their method is in
the spirit of the linear sampling method of Colton and Kirsch [89].

In Part II we develop a method to detect the size and the location of an
inclusion in a homogeneous elastic body in a mathematically rigorous way. In-
clusions of small size are believed to be the starting point of crack development
in elastic bodies. In Chap. 5, we review some basic facts on the layer poten-
tials of the Lamé system. In Chap. 6, we give in a way analogous to GPT’s,
mathematical definitions of elastic moment tensors (EMT’s) and show sym-
metry and positive-definiteness of the first-order EMT. The first-order EMT
was introduced by Maz’ya and Nazarov [202]. In Chap. 7, we find a complete
asymptotic formula of solutions of the linear elastic system in terms of the size
of the inclusion. The method of derivation is parallel to that in Part I apart
from some technical difficulties due to the fact that we are dealing with a sys-
tem, not a single equation, and the equations inside and outside the inclusion
are different. Based on this asymptotic expansion we derive in Chap. 8 for-
mulae to find the location and the order of magnitude of the elastic inclusion.
The formulae are explicit and can be easily implemented numerically.

The problem we consider in Part III is to detect unknown dielectric inclu-
sions by means of a finite number of voltage-to-current pairs measured on the
boundary. We consider solutions to the Helmholtz equation in two and three
dimensions. We begin by proving in Chap. 9 existence and uniqueness of a
solution to the Helmholtz equation. The proof, due to Vogelius and Volkov
[259], uses the theory of collectively compact operators. Based on layer po-
tential techniques and two new decomposition formulae of the solution to the
Helmholtz equation, established in Chap. 10, we provide in Chap. 11 for such
solutions a rigorous systematic derivation of complete asymptotic expansions
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of perturbations resulting from the presence of diametrically small inclusions
with constitutive parameters different from those of the background medium.
The leading-order term in these asymptotic formulae has been derived by
Vogelius and Volkov in [259]. We then develop in Chap. 12 two effective algo-
rithms for reconstructing small dielectric inclusions from boundary measure-
ments at a fixed frequency. The first algorithm, like the variational method
in Chap. 5, reduces the reconstruction problem of the small inclusions to the
calculation of an inverse Fourier transform. The second one is the MUSIC
(standing for MUltiple-Signal-Classification) algorithm. We explain how it
applies to imaging of small dielectric inclusions. Another algorithm based on
projections on three planes was proposed and successfully tested by Volkov
in [261]. Results similar to those presented in this part have been obtained in
the context of the full (time-harmonic) Maxwell equations in [31].

Finally, it is important to note that some of the techniques described
in this book can be applied to problems in many fields other than inverse
boundary value problems. In this connection we would particularly like to
mention the mathematical theory of composite materials [84, 206, 186, 211, 24]
and topological shape optimization [222, 196, 126, 132, 239].
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Detection of Small Conductivity Inclusions
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Let Ω be a bounded domain in IRd, d ≥ 2, with a connected Lipschitz bound-
ary ∂Ω. Let ν denote the unit outward normal to ∂Ω. Suppose that Ω con-
tains a finite number m of small inclusions Ds, s = 1, . . . ,m, each of the form
Ds = εBs + zs, where Bs, s = 1, . . . ,m, is a bounded Lipschitz domain in
IRd containing the origin. We assume that the domains Ds, s = 1, . . . ,m, are
separated from each other and from the boundary. More precisely, we assume
that there exists a constant c0 > 0 such that

|zs − zs′ | ≥ 2c0 > 0 ∀ s �= s′ and dist(zs, ∂Ω) ≥ 2c0 > 0 ∀ s ,

that ε, the common order of magnitude of the diameters of the inclusions, is
sufficiently small and that these inclusions are disjoint. We also assume that
the background is homogeneous with conductivity 1 and the inclusion Ds has
conductivity ks, 0 < ks �= 1 < +∞, for 1 ≤ s ≤ m.

Let u denote the steady-state voltage potential in the presence of the
conductivity inclusions

⋃m
s=1Ds, i.e., the solution in W 1,2(Ω) to






∇ ·
(

χ

(

Ω \
m⋃

s=1

Ds

)

+
m∑

s=1

ksχ(Ds)
)

∇u = 0 in Ω ,

∂u

∂ν

∣
∣
∣
∣
∂Ω

= g .

Let U denote the ”background” potential, that is, the solution to





∆U = 0 in Ω ,

∂U

∂ν

∣
∣
∣
∣
∂Ω

= g .

The function g represents the applied boundary current; it belongs to L2(∂Ω)
and has mean value zero. The potentials, u and U , are normalized by
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∫

∂Ω

u dσ =
∫

∂Ω

U dσ = 0 .

The problem we consider in this part is to determine unknown inclusions
Ds, s = 1, . . . ,m, by means of one or a finite number of current-to-voltage
pairs (g, u|∂Ω) measured on ∂Ω.

This problem is called the inverse conductivity problem with one or finite
boundary measurements (or Electrical Impedance Tomography) in contrast
with the many measurements problem (or Calderón’s problem) where an infi-
nite number of boundary measurements are used. In many applied situations,
it is the potential u that is prescribed and the current g that is measured on
∂Ω. This makes some difference (not significant theoretically and computa-
tionally) in the case of finite boundary measurements but makes almost no
difference in the case of many boundary measurements, since actually it is the
set of Cauchy data (g, u|∂Ω) that is given.

For the many measurements problem there is a well-established theory. We
refer to the survey papers of Sylvester and Uhlmann [249], and of Uhlmann
[255, 256], as well as to the book of Isakov [158], since this problem is out of
the scope of our monograph. When d ≥ 2, many boundary measurements pro-
vide much more information about the conductivity of Ω than a finite number
of measurements. Thus, the inverse conductivity problem with finite measure-
ments is more difficult than the one with many boundary measurements and
not much was known about it until recently. Fortunately, there has been over
the last few years a considerable amount of interesting work and new tech-
niques dedicated to both theoretical and numerical aspects of this problem.
It is the purpose of this part to describe some of these fresh and promising
techniques, in particular, those for the reconstruction of diametrically small
inclusions.

Let us very briefly emphasize our general methodology for solving our
inverse conductivity problem (with finite measurements). We first derive an
asymptotic expansion of the boundary voltage difference u−U to any order in
ε. Then we apply this very explicit asymptotic behavior to the effective esti-
mation of the location and some geometric features of the set of conductivity
inclusions

⋃m
s=1Ds. To present these results we shall need a decomposition

formula of u into a harmonic part and a refraction part, the Neumann function
associated with the background conductor Ω, and the generalized polarization
tensors (GPT’s) associated with the scaled domains Bs and their conductivi-
ties ks. The GPT’s are in fact the basic building blocks for our full asymptotic
expansion of u−U on ∂Ω and contain significant information on the domains
Bs and their conductivities ks. Then it is important to precisely characterize
these GPT’s and derive their basic properties.

The problem we consider here occurs in many practical situations. The
inclusions

⋃m
s=1Ds might in a medical application represent potential tumors,

in a material science application they might represent impurities, and finally
in a war or post-war situation they could represent anti-personnel mines.
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In medical applications, EIT is supported by the experimental evidence
that different biological tissues have different electrical properties that change
with cell concentration, cellular structure, molecular composition, and so
on [165, 245]. Therefore, these properties manifest structural, functional,
metabolic, and pathological conditions of the tissue providing valuable di-
agnostic information.

We conclude this introduction with a discussion of classical image recon-
struction algorithms in EIT.

The most classical technique consists of a minimization approach. We as-
sume an initial conductivity distribution for the model and iteratively update
it until it minimizes the difference between measured and computed boundary
voltages. This kind of method was first introduced in EIT by Yorkey, Webster,
and Tompkins [266] following numerous variations and improvements. These
include utilization of a priori information, various forms of regularization,
and so on [264, 145, 257, 86]. Even though this approach is widely adopted
for imaging by many researchers, it requires a large amount of computation
time for producing images even with low spatial resolution and poor accuracy.

In the 1980’s, Barber and Brown [45] introduced the back-projection algo-
rithm for EIT that was the first fast and useful algorithm although it provides
images with very low resolution. Since this algorithm is inspired from the com-
puted tomography (CT) algorithm, it can be viewed as a generalized Radon
Transform [240].

The third technique is the dynamical electrical impedance imaging. This
interesting and sophisticated technique, developed by the Rensselaer im-
pedance tomography group [78, 80, 79, 213, 244, 246, 108, 129, 124, 154, 153],
is designed to produce images of a change of conductivity in the human body
for purpose of applications in cardiac and respiratory imaging. The main idea
is to decompose the conductivity into a static term, viewed as the background
conductivity of human body, and a perturbing term, considered as the change
of conductivity due to respiratory or heart function. The mathematical prob-
lem here is to visualize the perturbing term by an EIT system. Although this
algorithm can provide accurate images when an initial guess of the background
conductivity is reasonably good, it seems that new ideas are still needed to
obtain good resolution images and completely satisfy practitioners, specially
in screening for breast cancer.

Our main aim in this part is to propose a new mathematical direction
of future EIT research mainly for biomedical applications. A new electronic
system based on the mathematical modeling described in this book is be-
ing developed for breast cancer imaging at the Impedance Imaging Research
Center by Jin Keun Seo and his group [26, 243, 192].



2

Transmission Problem

In this chapter we review some well-known results on the solvability and layer
potentials for the conductivity problem, which we shall use frequently in subse-
quent chapters, and prove a decomposition formula of the steady-state voltage
potential into a harmonic part and a refraction part. Our main aim here is
to collect together the various concepts, basic definitions and key theorems
on layer potentials on Lipschitz domains, with which the reader might not
be familiar. This chapter gives a concise treatment of this subject where the
technicalities are kept to a minimum.

2.1 Some Notations and Preliminaries

We begin with the concept of a Lipschitz domain. A bounded open con-
nected domain D in IRd is called a Lipschitz domain with Lipschitz char-
acter (r0, L,N) if for each point x ∈ ∂D there is a coordinate system
(x′, xd), x′ ∈ IRd−1, xd ∈ IR, so that with respect to this coordinate system
x = (0, 0), and there are a double truncated cylinder Z (called a coordinate
cylinder) centered at x with axis parallel to the xd-axis and whose bottom and
top are at a positive distance r0 < l < 2r0 from ∂D, and a Lipschitz function
ϕ with ||∇ϕ||L∞(IRd−1) ≤ L, so that Z ∩D = Z ∩ {(x′, xd) : xd > ϕ(x′)} and
Z ∩ ∂D = Z ∩ {(x′, xd) : xd = ϕ(x′)}. The pair (Z,ϕ) is called a coordinate
pair. By compactness it is possible to cover ∂D with a finite number of co-
ordinate cylinders Z1, . . . , ZN . Bounded Lipschitz domains satisfy both the
interior and exterior cone conditions.

We say that f ∈ W 2
1 (∂D) if f ∈ L2(∂D) and for every cylinder Z as in the

above definition with associated Lipschitz function ϕ, there are L2(∂D ∩ Z)
functions gp, 1 ≤ p ≤ d− 1, such that

∫

IRd−1
h(x′)gp(x′, ϕ(x′)) dx′ = −

∫

IRd−1

∂

∂xp
h(x′)f(x′, ϕ(x′)) dx′

H. Ammari and H. Kang: LNM 1846, pp. 11–39, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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for 1 ≤ p ≤ d− 1, whenever h ∈ C∞
0 (IRd−1 ∩ Z). Fixing a covering of ∂D by

cylinders Z1, . . . , ZN , f ∈ W 2
1 (∂D) may be normed by the sum of L2 norms

of all the locally defined gp together with the L2 norm of f .
We define the Banach spaces W 1,p(D), 1 < p < +∞, for an open set D by

W 1,p(D) =
{

f ∈ Lp(D) :
∫

D

|f |p +
∫

D

|∇f |p < +∞
}

.

A norm is introduced by defining

||f ||W 1,p(D) = (
∫

D

|f |p +
∫

D

|∇f |p)1/p .

Another Banach space W 1,p
0 (D) arises by taking the closure of C∞

0 (D), the set
of infinitely differentiable functions with compact support in D, in W 1,p(D).
The spaces W 1,p(D) and W 1,p

0 (D) do not coincide for bounded D. The case
p = 2 is special, since the spaces W 1,2(D) and W 1,2

0 (D) are Hilbert spaces
under the scalar product

(u, v) =
∫

D

u v +
∫

D

∇u · ∇v .

If D is a bounded Lipschitz domain, we will also need the space W 1,2
loc (IRd \D)

of functions f ∈ L2
loc(IR

d \D) such that

hf ∈W 1,2(IRd \D), ∀ h ∈ C∞
0 (IRd \D) .

Further, we define W 2,2(D) as the space of functions f ∈ W 1,2(D) such
that ∂2f ∈ L2(D) and the space W 3/2,2(D) as the interpolation space
[W 1,2(D),W 2,2(D)]1/2. See, for example, the book of Bergh and Löfström
[55].

We recall that if D is a bounded Lipschitz domain then the Poincaré
inequality [128]

∫

D

|u(x) − u0|2 dx ≤ C

∫

D

|∇u(x)|2 dx ,

holds for all u ∈ W 1,2(D), where

u0 =
1
|D|

∫

D

u(x) dx .

It is known that the trace operator u 	→ u|∂D is a bounded linear surjective
operator from W 1,2(D) into W 2

1
2
(∂D), where f ∈ W 2

1
2
(∂D) if and only if

f ∈ L2(∂D) and
∫

∂D

∫

∂D

|f(x) − f(y)|2
|x− y|d dσ(x) dσ(y) < +∞ .
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See [128] . Let W 2
− 1

2
(∂D) = (W 2

1
2
(∂D))∗ and let 〈, 〉 1

2 ,− 1
2

denote the duality
pair between these dual spaces.

Let T1, . . . , Td−1 be an orthonormal basis for the tangent plane to ∂D

at x and let ∂/∂T =
∑d−1

p=1 ∂/∂Tp Tp denote the tangential derivative on
∂D. The space W 2

1 (∂D) is then the set of functions f ∈ L2(∂D) such that
∂f/∂T ∈ L2(∂D). We also recall that according to [208] and [93] (Theorem
1.10) if D is a bounded Lipschitz domain (with connected boundary) then the
following Poincaré inequality on ∂D holds

||f − f0||L2(∂D) ≤ C

∥
∥
∥
∥
∂f

∂T

∥
∥
∥
∥

L2(∂D)

, (2.1)

for any f ∈ W 2
1 (∂D), where f0 = 1

|∂D|
∫

∂D
f dσ. Here the constant C depends

only on the Lipschitz character of D.
The following lemma from [18] is of use to us.

Lemma 2.1 Let f(x) =
∑

|α|≤n aαx
α be a harmonic polynomial and D be a

bounded Lipschitz domain in IRd. There is a constant C depending only on
the Lipschitz character of D and n such that

‖∇f‖L2(∂D) ≤ C‖∇f‖L2(D) . (2.2)

Let us now turn to the concept of variational solutions. Let (apq)d
p,q=1

be a real symmetric d × d matrix with apq(x) ∈ L∞(IRd). We assume that
(apq)d

p,q=1 is strongly elliptic, i.e.,

1
C
|ξ|2 ≤

∑

p,q

apq(x)ξpξq ≤ C|ξ|2

for all ξ = (ξp)d
p=1 ∈ IRd \ {0}, where C is a positive constant. Let Ω be a

bounded Lipschitz domain in IRd. Given g ∈ W 2
− 1

2
(∂Ω), with 〈1, g〉 1

2 ,− 1
2

= 0,

we say that u ∈W 1,2(Ω) is the (variational) solution to the Neumann problem





d∑

p,q=1

∂

∂xp
apq

∂

∂xq
u = 0 in Ω ,

∂u

∂ν̃

∣
∣
∣
∣
∂Ω

= g ,

(2.3)

where ν̃p =
∑

q apqνq, if given any η ∈W 1,2(Ω) we have

∫

Ω

d∑

p,q=1

apq
∂u

∂xp

∂η

∂xq
dx = 〈η, g〉 1

2 ,− 1
2
.

The Lax-Milgram lemma shows that there exists a unique (modulo constants)
u ∈W 1,2(Ω) which solves (2.3).
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2.2 Layer Potentials for the Laplacian

Let us first review some well-known properties of the layer potentials for the
Laplacian and prove some useful identities. The theory of layer potentials has
been developed in relation to boundary value problems in a Lipschitz domain.

To give a fundamental solution to the Laplacian with a general d, we
denote the area of the (d−1)-dimensional unit sphere by ωd. Even though the
following result is elementary we give its proof for the reader’s convenience.

Lemma 2.2 A fundamental solution to the Laplacian is given by

Γ (x) =






1
2π

ln |x| , d = 2 ,

1
(2 − d)ωd

|x|2−d , d ≥ 3 .
(2.4)

Proof. The Laplacian is radially symmetric, so it is natural to seek Γ in the
form Γ (x) = w(r) where r = |x|. Since

∆w =
d2w

d2r
+

(d− 1)
r

dw

dr
=

1
rd−1

d

dr
(rd−1 dw

dr
) ,

∆Γ = 0 in IRd \ {0} shows that w must satisfy

1
rd−1

d

dr
(rd−1 dw

dr
) = 0 for r > 0 ,

so

w(r) =






ad

(2 − d)
1

rd−2
+ bd when d ≥ 3 ,

a2 log r + b2 when d = 2 ,

for some constants ad and bd. The choice of bd is arbitrary, but ad is fixed by
the requirement that ∆Γ = δ0 in IRd, where δ0 is the Dirac function at 0, or
in other words ∫

IRd

Γ∆φ = φ(0) for φ ∈ C∞
0 (IRd) . (2.5)

Any test function φ ∈ C∞
0 (IRd) has compact support, so we can apply Green’s

formula over the unbounded domain {x : |x| > ε} to arrive at
∫

|x|>ε

Γ (x)∆φ(x) dx =
∫

|x|=ε

φ(x)
∂Γ

∂ν
(x) dσ(x) −

∫

|x|=ε

Γ (x)
∂φ

∂ν
(x) dσ(x) ,

(2.6)
where ν = x/|x| on {|x| = ε}. Since

∇Γ (x) =
dw

dr

x

|x| =
adx

|x|d for d ≥ 2 ,

we have
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∂Γ

∂ν
(x) = adε

1−d for |x| = ε .

Thus by the mean-value theorem for integrals,
∫

|x|=ε

φ(x)
∂Γ

∂ν
(x) dσ(x) =

ad

εd−1

∫

|x|=ε

φ(x) dσ(x) = adωdφ(xε)

for some xε satisfying |xε| = ε, whereas

∫

|x|=ε

Γ (x)
∂φ

∂ν
(x) dσ(x) =

{
O(ε) if d ≥ 3 ,
O(ε| log ε|) if d = 2 .

Thus, if ad = 1/ωd, then (2.5) follows from (2.6) after sending ε→ 0. ��
Now we prove Green’s identity.

Lemma 2.3 Suppose D is a bounded Lipschitz domain in IRd, d ≥ 2, and let
u ∈W 1,2(D) be a harmonic function. Then for any x ∈ D there holds

u(x) =
∫

∂D

(

u(y)
∂Γ

∂νy
(x− y) − ∂u

∂νy
(y)Γ (x− y)

)

dσ(y) . (2.7)

Proof. For x ∈ D let Bε(x) be the ball of center x and radius ε. We apply
Green’s formula to u and Γ (x− ·) in the domain D \Bε for small ε and get

∫

D\Bε(x)

(

Γ∆u− u∆Γ

)

dy =
∫

∂D

(

Γ
∂u

∂ν
− u

∂Γ

∂ν

)

dσ(y)

−
∫

∂Bε(x)

(

Γ
∂u

∂ν
− u

∂Γ

∂ν

)

dσ(y) .

Note ∆Γ = 0 in D \Bε(x). Then we have
∫

∂D

(

Γ
∂u

∂ν
− u

∂Γ

∂ν

)

dσ(y) =
∫

∂Bε(x)

(

Γ
∂u

∂ν
− u

∂Γ

∂ν

)

dσ(y) .

For d ≥ 3, we get by definition of Γ
∫

∂Bε(x)

Γ
∂u

∂ν
dσ(y) =

1
(2 − d)ωd

ε2−d

∫

∂Bε(x)

∂u

∂ν
dσ(y) = 0

and ∫

∂Bε(x)

u
∂Γ

∂ν
dσ(y) =

1
ωdεd−1

∫

∂Bε(x)

u dσ(y) = u(x) ,

by the mean value property. We get the same conclusion for d = 2 in the same
way. ��

Given a bounded Lipschitz domain D in IRd, d ≥ 2, we will denote the
single and double layer potentials of a function φ ∈ L2(∂D) as SDφ and DDφ,
respectively, where
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SDφ(x) :=
∫

∂D

Γ (x− y)φ(y) dσ(y) , x ∈ IRd, (2.8)

DDφ(x) :=
∫

∂D

∂

∂νy
Γ (x− y)φ(y) dσ(y) , x ∈ IRd \ ∂D . (2.9)

For a function u defined on IRd \ ∂D, we denote

u

∣
∣
∣
∣
±

(x) := lim
t→0+

u(x± tνx), x ∈ ∂D ,

and
∂

∂νx
u

∣
∣
∣
∣
±

(x) := lim
t→0+

〈∇u(x± tνx), νx〉 , x ∈ ∂D ,

if the limits exist. Here νx is the outward unit normal to ∂D at x, and 〈, 〉
denotes the scalar product in IRd. For ease of notation we will sometimes use
the dot for the scalar product in IRd.

We now state without proofs the jump relations obeyed by the double
layer potential and by the normal derivative of the single layer potential. The
boundedness of these operators is not clear in the Lipschitz domains, because
of the critical singularities of the kernel and the fact that we are dealing
with non-convolution type operators. The following theorem can be proved
using the deep results of Coifman-McIntosh-Meyer [87] on the boundedness
of the Cauchy integral on Lipschitz curves, which together with the method
of rotations of Calderón [68] allows one to produce patterns of arguments like
those found in [97] for C1-domains. Complete proofs can be found in [258] (for
smooth domains, see [115, 119, 217]). The reader is referred to Appendix A.1
for a statement of the theorem of Coifman-McIntosh-Meyer.

Theorem 2.4 Let D be a bounded Lipschitz domain in IRd. For φ ∈ L2(∂D)

SDφ
∣
∣
+
(x) = SDφ

∣
∣
−(x) a.e. x ∈ ∂D , (2.10)

∂

∂T
SDφ

∣
∣
∣
∣
+

(x) =
∂

∂T
SDφ

∣
∣
∣
∣
−

(x) a.e. x ∈ ∂D , (2.11)

∂

∂ν
SDφ

∣
∣
∣
∣
±

(x) =
(

±1
2
I + K∗

D

)

φ(x) a.e. x ∈ ∂D , (2.12)

(DDφ)
∣
∣
± =

(

∓1
2
I + KD

)

φ(x) a.e. x ∈ ∂D , (2.13)

where KD is defined by

KDφ(x) =
1
ωd

p.v.
∫

∂D

〈y − x, νy〉
|x− y|d φ(y) dσ(y) (2.14)

and K∗
D is the L2-adjoint of KD, i.e.,
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K∗
Dφ(x) =

1
ωd

p.v.
∫

∂D

〈x− y, νx〉
|x− y|d φ(y) dσ(y) . (2.15)

Here p.v. denotes the Cauchy principal value. The operators KD and K∗
D are

singular integral operators and bounded on L2(∂D).

Observe that if D is a two dimensional disk with radius r, then, as was ob-
served in [168],

〈x − y, νx〉
|x− y|2 =

1
2r

∀ x, y ∈ ∂D, x �= y ,

and therefore, for any φ ∈ L2(∂D),

K∗
Dφ(x) = KDφ(x) =

1
4πr

∫

∂D

φ(y) dσ(y) , (2.16)

for all x ∈ ∂D. For d ≥ 3, if D denotes a sphere with radius r, then, since

〈x− y, νx〉
|x− y|d =

1
2r

1
|x− y|d−2

∀ x, y ∈ ∂D, x �= y ,

we have, as shown by Lemma 2.3 of [170], that for any φ ∈ L2(∂D),

K∗
Dφ(x) = KDφ(x) =

(2 − d)
2r

SDφ(x) (2.17)

for all x ∈ ∂D.
Let now D be a bounded Lipschitz domain, and let

L2
0(∂D) :=

{

φ ∈ L2(∂D) :
∫

∂D

φdσ = 0
}

.

Let λ �= 0 be a real number. Of particular interest for solving the transmission
problem for the Laplacian would be the invertibility of the operator λI −K∗

D

on L2(∂D) or L2
0(∂D).

First, it was proved by Kellog in [175] that the eigenvalues of K∗
D on

L2(∂D) lie in (− 1
2 ,

1
2 ] for smooth domains; but this argument goes through

for Lipschitz domains [110]. The following injectivity result holds.

Lemma 2.5 Let λ be a real number. The operator λI −K∗
D is one to one on

L2
0(∂D) if |λ| ≥ 1

2 , and for λ ∈ (−∞,− 1
2 ] ∪ (1

2 ,∞), λI − K∗
D is one to one

on L2(∂D).

Proof. The argument is by contradiction. Let λ ∈ (−∞,− 1
2 ] ∪ (1

2 ,∞), and
suppose that φ ∈ L2(∂D) satisfies (λI−K∗

D)φ = 0 and φ is not identically zero.
Since by Green’s formula KD(1) = 1/2, it follows by duality that φ has mean
value zero on ∂D. Hence SDφ(x) = O(1/|x|d−1) and ∇SDφ(x) = O(1/|x|d)
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at infinity for d ≥ 2. Since φ is not identically zero, the following numbers
cannot be zero

A =
∫

D

|∇SDφ|2 dx and B =
∫

IRd\D

|∇SDφ|2 dx .

On the other hand, using the divergence theorem and (2.12), we have

A =
∫

∂D

(−1
2
I + K∗

D)φ SDφ dσ and B = −
∫

∂D

(
1
2
I + K∗

D)φ SDφ dσ .

Since (λI −K∗
D)φ = 0, it follows that

λ =
1
2
B −A

B +A
.

Thus, |λ| < 1/2, which is a contradiction and so, for λ ∈ (−∞,− 1
2 ] ∪ (1

2 ,∞),
λI −K∗

D is one to one on L2(∂D).
If λ = 1/2, then A = 0 and hence SDφ = constant in D. Thus SDφ is

harmonic in IRd\∂D, behaves like O(|x|1−d) as |x| → +∞ (since φ ∈ L2
0(∂D)),

and is constant on ∂D. It then follows that SDφ = 0 in IRd, and hence φ = 0.
This proves that (1/2) I −K∗

D is one to one on L2
0(∂D). ��

Let us now turn to the surjectivity of the operator λI − K∗
D on L2(∂D)

or L2
0(∂D). If D is a bounded C1+α-domain for some α > 0 then we have the

bound ∣
∣
∣
∣
〈x− y, νx〉
|x− y|d

∣
∣
∣
∣ ≤ C

1
|x− y|d−1−α

for x, y ∈ ∂D, x �= y ,

which shows that the operators KD and K∗
D are compact operators in L2(∂D)

[119]. From the above bound we can also deduce that there exists a constant
C such that the estimate

||KDφ||L∞(∂D) ≤ C||φ||L∞(∂D) (2.18)

holds for all φ ∈ L∞(∂D). Moreover, for any λ ∈ (−∞,− 1
2 ] ∪ (1

2 ,∞) there
exists a constant Cλ such that

||φ||L∞(∂D) ≤ Cλ||(λI −KD)φ||L∞(∂D), ∀ φ ∈ L∞(∂D) . (2.19)

If D is a bounded C1-domain, the operators KD and K∗
D are still compact

operators in L2(∂D) [115] but more elaborate arguments are needed for a
proof.

Hence, by Fredholm theory, it follows from Lemma 2.5 that λI − K∗
D is

invertible on L2
0(∂D) if |λ| ≥ 1

2 , and for λ ∈ (−∞,− 1
2 ] ∪ (1

2 ,∞), λI − K∗
D is

invertible on L2(∂D).
Unlike the C1-case, the operators KD and K∗

D are not compact on a Lips-
chitz domain and thus, Fredholm theory is not applicable. This difficulty for
the invertibility of λI − K∗

D was overcome by Verchota [258] who made the
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key observation that the following Rellich identities, see [237, 231, 223, 162],
are appropriate substitutes of compactness in the case of Lipschitz domains.
We need to fix a notation first. For a vector field α and a function u let

〈α, ∂u
∂T

〉 =
d−1∑

p=1

〈α, Tp〉
∂u

∂Tp
.

Here T1, . . . , Td−1 is an orthonormal basis for the tangent plane to ∂D at x.

Lemma 2.6 (Rellich’s identities) Let D be a bounded Lipschitz domain in
IRd, d ≥ 2. Let u be a function such that either

(i) u is Lipschitz in D and ∆u = 0 in D, or
(ii) u is Lipschitz in IRd \D, ∆u = 0 in IRd \D, and |u(x)| = O(1/|x|d−2)

when d ≥ 3 and |u(x)| = O(1/|x|) when d = 2 as |x| → +∞.

Let α be a C1-vector field in IRd with compact support. Then

∫

∂D

〈α, ν〉
∣
∣
∣
∣
∂u

∂ν

∣
∣
∣
∣

2

=
∫

∂D

〈α, ν〉
∣
∣
∣
∣
∂u

∂T

∣
∣
∣
∣

2

− 2
∫

∂D

〈α, ∂u
∂T

〉∂u
∂ν

+






∫

D

2〈∇α∇u,∇u〉 − (∇ ·α)|∇u|2 if u satisfies (i) ,
∫

IRd\D

2〈∇α∇u,∇u〉 − (∇ ·α)|∇u|2 if u satisfies (ii) .

(2.20)

Proof. Suppose that u satisfies (i). Observe that

∇ · (α|∇u|2) = (∇ ·α)|∇u|2 + 〈α,∇|∇u|2〉 ,
= (∇ ·α)|∇u|2 + 2〈∇2uα,∇u〉 ,

and
∇ · (∇u〈α,∇u〉) = 〈α,∇u〉∆u+ 〈∇〈α,∇u〉,∇u〉

= 〈∇α∇u,∇u〉 + 〈∇2uα,∇u〉 .

Here ∇2u is the Hessian of u. Combining these identities, we obtain

∇ · (α|∇u|2) = 2∇ · (∇u〈α,∇u〉) + (∇ ·α)|∇u|2 − 2〈∇α∇u,∇u〉 .

Stokes’ formula shows that
∫

∂D

〈α, ν〉|∇u|2 = 2
∫

∂D

∂u

∂ν
〈α,∇u〉 +

∫

D

(∇ ·α)|∇u|2 − 2〈∇α∇u,∇u〉 .

Since

α = 〈α, ν〉ν +
d−1∑

p=1

〈α, Tp〉Tp ,
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we get

〈α,∇u〉 = 〈α, ν〉∂u
∂ν

+ 〈α, ∂u
∂T

〉 .

We also get

|∇u|2 =
∣
∣
∣
∣
∂u

∂ν

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂u

∂T

∣
∣
∣
∣

2

.

Thus after rearranging, we find

∫

∂D

〈α, ν〉
(∣
∣
∣
∣
∂u

∂ν

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂u

∂T

∣
∣
∣
∣

2
)

= 2
∫

∂D

〈α, ν〉
∣
∣
∣
∣
∂u

∂ν

∣
∣
∣
∣

2

+ 2
∫

∂D

〈α, ∂u
∂T

〉∂u
∂ν

+
∫

D

(∇ ·α)|∇u|2 − 2〈∇α∇u,∇u〉 .

Hence
∫

∂D

〈α, ν〉
∣
∣
∣
∣
∂u

∂ν

∣
∣
∣
∣

2

=
∫

∂D

〈α, ν〉
∣
∣
∣
∣
∂u

∂T

∣
∣
∣
∣

2

− 2
∫

∂D

〈α, ∂u
∂T

〉∂u
∂ν

+
∫

D

2〈∇α∇u,∇u〉 − (∇ ·α)|∇u|2 ,

and the identity (2.20) holds.
In order to establish the Rellich identity (2.20) when u satisfies (ii), we

merely replace D by IRd \D in the above proof and use the decay estimate at
infinity |u(x)| = O(1/|x|d−2) when d ≥ 3 and |u(x)| = O(1/|x|) when d = 2
as |x| → +∞ to apply the Stokes’ formula in all IRd \D. ��

As an easy consequence of the Rellich identities (2.20) the following im-
portant result holds.

Corollary 2.7 Let u be as in Lemma 2.6. Then there exists a positive con-
stant C depending only on the Lipschitz character of D such that

1
C

∥
∥
∥
∥
∂u

∂T

∥
∥
∥
∥

L2(∂D)

≤
∥
∥
∥
∥
∂u

∂ν

∥
∥
∥
∥

L2(∂D)

≤ C

∥
∥
∥
∥
∂u

∂T

∥
∥
∥
∥

L2(∂D)

. (2.21)

Proof. Let c0 be a fixed positive number. Let α be a vector field supported
in the set dist(x, ∂D) < 2c0 such that α · ν ≥ δ for some δ > 0, ∀ x ∈ ∂D
(here, δ depends only on the Lipschitz character of D). Applying (2.20) we
obtain
∫

∂D

〈α, ν〉
∣
∣
∣
∣
∂u

∂ν

∣
∣
∣
∣

2

=
∫

∂D

〈α, ν〉
∣
∣
∣
∣
∂u

∂T

∣
∣
∣
∣

2

+O
(∥∥
∥
∥
∂u

∂T

∥
∥
∥
∥

L2(∂D)

∥
∥
∥
∥
∂u

∂ν

∥
∥
∥
∥

L2(∂D)

+‖∇u‖L2(D)

)
.

Since

‖∇u‖2
L2(D) =

∫

∂D

u
∂u

∂ν
dσ ≤ ||u − u0||L2(∂D)

∥
∥
∥
∥
∂u

∂ν

∥
∥
∥
∥

L2(∂D)

,
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(because
∫

∂D ∂u/∂ν = 0) where u0 = 1
|∂D|

∫
∂D u dσ, the Poincaré inequality

(2.1) yields

‖∇u‖2
L2(D) ≤ C

∥
∥
∥
∥
∂u

∂T

∥
∥
∥
∥

L2(∂D)

∥
∥
∥
∥
∂u

∂ν

∥
∥
∥
∥

L2(∂D)

,

where the constant C depends only on the Lipschitz character of D. Thus

∫

∂D

〈α, ν〉
∣
∣
∣
∣
∂u

∂ν

∣
∣
∣
∣

2

=
∫

∂D

〈α, ν〉
∣
∣
∣
∣
∂u

∂T

∣
∣
∣
∣

2

+O
( ∥∥
∥
∥
∂u

∂T

∥
∥
∥
∥

L2(∂D)

∥
∥
∥
∥
∂u

∂ν

∥
∥
∥
∥

L2(∂D)

)
.

Employing a small constant-large constant argument, we conclude that esti-
mates (2.21) hold. ��

The following results are due to Verchota [258] and Escauriaza, Fabes, and
Verchota [110]. For proofs when ∂D is smooth, see [115, 119].

Theorem 2.8 The operator λI−K∗
D is invertible on L2

0(∂D) if |λ| ≥ 1
2 , and

for λ ∈ (−∞,− 1
2 ] ∪ (1

2 ,∞), λI −K∗
D is invertible on L2(∂D).

Proof. Let us first prove that the operators ±(1/2) I + K∗
D : L2

0(∂D) →
L2

0(∂D) are invertible. Observe that ±(1/2) I+K∗
D maps L2

0(∂D) into L2
0(∂D).

In fact, since KD(1) = 1/2, we have
∫

∂D

K∗
Df dσ =

1
2

∫

∂D

f dσ

for all f ∈ L2(∂D).
Let u(x) = SDf(x), where f ∈ L2

0(∂D). Then u satisfies conditions (i)
and (ii) in Lemma 2.6. Because of the second formula (2.11) in Theorem 2.4,
∂u/∂T is continuous across the boundary ∂D, and by the jump formula (2.12)

∂u

∂ν

∣
∣
∣
∣
±

= (±1
2
I + K∗

D)f .

We now apply Corollary 2.7 in D and IRd \D to obtain that
∥
∥
∥
∥
∥

∂u

∂ν

∣
∣
∣
∣
−

∥
∥
∥
∥
∥

L2(∂D)

�
∥
∥
∥
∥
∥

∂u

∂ν

∣
∣
∣
∣
+

∥
∥
∥
∥
∥

L2(∂D)

,

or equivalently

1
C

||(1
2
I + K∗

D)f ||L2(∂D) ≤ ||(1
2
I −K∗

D)f ||L2(∂D)

||(1
2
I −K∗

D)f ||L2(∂D) ≤ C ||(1
2
I + K∗

D)f ||L2(∂D) .
(2.22)

Here the constant C depends only on the Lipschitz character of D. Since
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f = (
1
2
I + K∗

D)f + (
1
2
I −K∗

D)f ,

(2.22) shows that

||(1
2
I + K∗

D)f ||L2(∂D) ≥ C||f ||L2(∂D) . (2.23)

In order to keep the technicalities to a minimum, we deal with the case
when ∂D is given by a Lipschitz graph by localizing the situation. Assume

∂D =
{

(x′, xd) : xd = ϕ(x′)
}

,

where ϕ : IRd−1 → IR is a Lipschitz function. To show that A = (1/2) I +K∗
D

is invertible we consider the Lipschitz graph corresponding to tϕ,

∂Dt =
{

(x′, xd) : xd = tϕ(x′)
}

for 0 < t < 1 ,

and the corresponding operators K∗
Dt
, At. Then A0 = (1/2) I, A1 = A,

and At are continuous in norm as a function of t. Moreover, by (2.23),
||Atf ||L2(∂Dt) ≥ C||f ||L2(∂Dt), with C independent of t in (0, 1) due to the
fact that the constant in (2.23) depends only on the Lipschitz character of D.
The invertibility of A now follows from the continuity method. See Appendix
A.2. This establishes the invertibility of (1/2)I +K∗

D on L2
0(∂D). Invertibility

of −(1/2)I+K∗
D on L2

0(∂D) can be proved in the same way starting from the
inequality

||(−1
2
I + K∗

D)f ||L2(∂D) ≥ C||f ||L2(∂D) .

We now show that (1/2) I + K∗
D is invertible on L2(∂D). To do that, it

suffices to show that it is onto on L2(∂D). Since KD(1) = 1/2, we get
∫

∂D

(
1
2
I + K∗

D)f dσ =
∫

∂D

f dσ

for all f ∈ L2(∂D). Let h := ((1/2) I + K∗
D)(1). For a given g ∈ L2(∂D), let

g = g − ch+ ch := g0 + ch , c =
1

|∂D|

∫

∂D

g dσ .

Since ∫

∂D

h dσ =
∫

∂D

(
1
2
I + K∗

D)h dσ = |∂D| ,

one can easily see that g0 ∈ L2
0(∂D). Let f0 ∈ L2

0(∂D) be such that

((1/2) I + K∗
D)f0 = g0 .
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Then f := f0 + c satisfies ((1/2) I +K∗
D)f = g. Thus (1/2) I + K∗

D is onto on
L2(∂D).

Suppose now that |λ| > 1/2. Let f ∈ L2(∂D) and set u(x) = SDf(x). Let
c0 be a fixed positive number. Let α be a vector field supported in the set
dist(x, ∂D) < 2c0 such that α · ν ≥ δ for some δ > 0, ∀ x ∈ ∂D. From the
Rellich identity (2.20), we have

∫

∂D

〈α, ν〉
∣
∣
∣
∣
∂u

∂ν

∣
∣
∣
∣

2

=
∫

∂D

〈α, ν〉
∣
∣
∣
∣
∂u

∂T

∣
∣
∣
∣

2

− 2
∫

∂D

〈α, ∂u
∂T

〉∂u
∂ν

+
∫

D

2〈∇α∇u,∇u〉 − (∇ ·α)|∇u|2 .
(2.24)

Observe that on ∂D

∂u

∂ν

∣
∣
∣
∣
−

= (−1
2
I + K∗

D)f = (λ− 1
2
)f − (λI −K∗

D)f ,

and
〈∇u,α〉 =

∂u

∂ν
〈α, ν〉 + 〈α, ∂u

∂T
〉

= −1
2
〈α, ν〉f + Kαf ,

where

Kα(f) =
1
ωd

p.v.
∫

∂D

〈x − y,α(x)〉
|x− y|d f(y) dσ(y) .

We also have
∫

D

|∇u|2 dx =
∫

∂D

u
∂u

∂ν

∣
∣
∣
∣
−
dσ

=
∫

∂D

SD(f)
[

(λ− 1
2
)f − (λI −K∗

D)f
]

dσ .

By using

−2
∫

∂D

〈α, ∂u
∂T

〉∂u
∂ν

= 2
∫

∂D

〈α, ν〉
∣
∣
∣
∣
∂u

∂ν

∣
∣
∣
∣

2

− 2
∫

∂D

∂u

∂ν

[

− 1
2
〈α, ν〉f + Kα(f)

]

,

we get from (2.24) that

1
2

∫

∂D

〈α, ν〉
∣
∣
∣
∣
∂u

∂ν

∣
∣
∣
∣

2

= −1
2

∫

∂D

〈α, ν〉
∣
∣
∣
∣
∂u

∂T

∣
∣
∣
∣

2

+
∫

∂D

∂u

∂ν

[

− 1
2
〈α, ν〉f + Kα(f)

]

−
∫

D

〈∇α∇u,∇u〉 +
1
2
(∇ ·α)|∇u|2 .



24 2 Transmission Problem

Thus we obtain

1
2

(

λ− 1
2

)2 ∫

∂D

〈α, ν〉f2 dσ

≤
∫

∂D

[

− 1
2
〈α, ν〉f + Kα(f)

][

(λ− 1
2
)f − (λI −K∗

D)(f)
]

dσ

+C||f ||L2(∂D)

(
||SDf ||L2(∂D) + ||(λI −K∗

D)(f)||L2(∂D)

)

+C||SDf ||L2(∂D)||(λI −K∗
D)(f)||L2(∂D) + C||(λI −K∗

D)(f)||2L2(∂D) ,

where C denotes a constant depending on the Lipschitz character of D and
λ. Multiplying out the integrand in the second integral above and taking to
the left-hand side of the inequality the term involving f2, we obtain

1
2

(

λ2 − 1
4

)∫

∂D

〈α, ν〉f2 dσ ≤
(

λ− 1
2

)∫

∂D

Kα(f)f dσ

+C||f ||L2(∂D)

(
||SDf ||L2(∂D) + ||(λI −K∗

D)(f)||L2(∂D)

)

+C||SDf ||L2(∂D)||(λI −K∗
D)(f)||L2(∂D) + C||(λI −K∗

D)(f)||2L2(∂D) .

If K∗
α denotes the adjoint operator on L2(∂D) of the operator Kα, it is easy

to see that Kα + K∗
α = Rα, where the operator Rα is defined by

Rα(f) =
1
ωd

p.v.
∫

∂D

〈x− y,α(x) −α(y)〉
|x− y|d f(y) dσ(y) .

By duality, we have
∫

∂D

Kα(f)f dσ =
1
2

∫

∂D

Rα(f)f dσ .

Since |λ| > 1/2 and α · ν ≥ δ > 0, using the large constant-small constant
argument, we can get from the above inequality that

||f ||L2(∂D) ≤ C
(
||(λI −K∗

D)(f)||L2(∂D) + ||SDf ||L2(∂D)

+ ||Rα(f)||L2(∂D)

)
.

(2.25)

Since SD and Rα are compact on L2(∂D), we conclude from the above esti-
mate that λI −K∗

D has a closed range.
We now prove that λI −K∗

D is surjective on L2(∂D) and hence invertible
on L2(∂D) by Lemma 2.5.

Suppose on the contrary that for some λ real, |λ| > 1/2, λI − K∗
D is not

invertible on L2(∂D). Then the intersection of the spectrum of K∗
D and the

set {λ ∈ IR : |λ| > 1/2} is not empty and so there exists a real number λ0

that belongs to this intersection and is a boundary point of this set. To reach
a contradiction it suffices to show that λ0I − K∗

D is invertible. By (2.25) we
know that λ0I −K∗

D is injective and has a closed range. Hence there exists a
constant C such that for all f ∈ L2(∂D) the following estimate holds
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||f ||L2(∂D) ≤ C||(λ0I −K∗
D)(f)||L2(∂D) . (2.26)

Since λ0 is a boundary point of the intersection of spectrum of K∗
D and the

real line there exists a sequence of real numbers λp with |λp| > 1/2, λp → λ0,
as p → +∞, and λpI − K∗

D is invertible on L2(∂D). Therefore, given g ∈
L2(∂D) there exists a unique fp ∈ L2(∂D) such that (λpI − K∗

D)(fp) = g. If
||fp||L2(∂D) has a bounded subsequence then there exists another subsequence
that converges weakly to some f0 in L2(∂D) and we have
∫

∂D

(λpI −K∗
D)(f0)h dσ = lim

p→+∞

∫

∂D

fp(λ0I − KD)(h) dσ

= lim
p→+∞

∫

∂D

(λ0I −K∗
D)(fp)h dσ =

∫

∂D

gh dσ .

Hence (λ0I − K∗
D)(f0) = g. In the opposite case we may assume that

||fp||L2(∂D) = 1 and (λ0I − K∗
D)(fp) converges to zero in L2(∂D). However

from (2.26)

1 = ||fp||L2(∂D) ≤ C||(λ0I −K∗
D)(fp)||L2(∂D)

≤ C|λ0 − λp| + C||(λpI −K∗
D)(fp)||L2(∂D) .

Since the final two terms converge to zero as p→ +∞, we arrive at a contra-
diction. We conclude that for each λ real, |λ| > 1/2, λI − K∗

D is invertible.
��

Analogously to (2.19) we can deduce from Theorem 2.8 that for any λ ∈
(−∞,− 1

2 ] ∪ (1
2 ,∞) there exists a constant Cλ such that

||φ||L2(∂D) ≤ Cλ||(λI −KD)φ||L2(∂D), ∀ φ ∈ L2(∂D) . (2.27)

Moreover,

||φ||L2(∂D) ≤ C||(−1
2
I + KD)φ||L2(∂D), ∀ φ ∈ L2

0(∂D) , (2.28)

for some positive constant C.
Suppose D ⊂ B1(0) is a star-shaped domain with respect to the origin in

two-dimensional space, where B1(0) is the disk of radius 1 and center 0. We
can quantify the constant C. For so doing, define

δ(D) := inf
x∈∂D

〈x, νx〉 .

Note that sinceD is a star-shaped domain with respect to the origin, δ(D) > 0.
For φ ∈ L2

0(∂D), set u := SDφ. It follows from the Rellich identity (2.20) with
α(x) = x that

∫

∂D

〈x, ν〉
∣
∣
∣
∣
∂u

∂T

∣
∣
∣
∣

2

dσ =
∫

∂D

〈x, ν〉
∣
∣
∣
∣
∂u

∂ν

∣
∣
∣
∣
±

∣
∣
∣
∣

2

dσ + 2
∫

∂D

〈x, ∂u
∂T

〉∂u
∂ν

∣
∣
∣
∣
±
dσ ,
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which leads to the following estimate:

δ

∥
∥
∥
∥
∂u

∂T

∥
∥
∥
∥

2

L2(∂D)

≤
∥
∥
∥
∥
∥

∂u

∂ν

∣
∣
∣
∣
±

∥
∥
∥
∥
∥

2

L2(∂D)

+ 2

∥
∥
∥
∥
∥

∂u

∂ν

∣
∣
∣
∣
±

∥
∥
∥
∥
∥

L2(∂D)

∥
∥
∥
∥
∂u

∂T

∥
∥
∥
∥

L2(∂D)

,

δ

∥
∥
∥
∥
∥

∂u

∂ν

∣
∣
∣
∣
±

∥
∥
∥
∥
∥

2

L2(∂D)

≤
∥
∥
∥
∥
∂u

∂T

∥
∥
∥
∥

2

L2(∂D)

+ 2

∥
∥
∥
∥
∥

∂u

∂ν

∣
∣
∣
∣
±

∥
∥
∥
∥
∥

L2(∂D)

∥
∥
∥
∥
∂u

∂T

∥
∥
∥
∥

L2(∂D)

.

Therefore
∥
∥
∥
∥
∂u

∂T

∥
∥
∥
∥

2

L2(∂D)

≤ 2δ + 4
δ2

∥
∥
∥
∥
∥

∂u

∂ν

∣
∣
∣
∣
±

∥
∥
∥
∥
∥

2

L2(∂D)

,

∥
∥
∥
∥
∥

∂u

∂ν

∣
∣
∣
∣
±

∥
∥
∥
∥
∥

2

L2(∂D)

≤ 2δ + 4
δ2

∥
∥
∥
∥
∂u

∂T

∥
∥
∥
∥

2

L2(∂D)

.

Thus, by the jump formula (2.12), we get

∥
∥
∥
∥(±

1
2
I + K∗

D)φ
∥
∥
∥
∥

L2(∂D)

=

∥
∥
∥
∥
∥

∂u

∂ν

∣
∣
∣
∣
±

∥
∥
∥
∥
∥

L2(∂D)

≤ 2δ + 4
δ2

∥
∥
∥
∥
∥

∂u

∂ν

∣
∣
∣
∣
±

∥
∥
∥
∥
∥

L2(∂D)

=
2δ + 4
δ2

‖(∓1
2
I + K∗

D)φ‖L2(∂D) ,

to conclude that

‖φ‖L2(∂D) ≤ ‖(±1
2
I + K∗

D)φ‖L2(∂D) + ‖(∓1
2
I + K∗

D)φ‖L2(∂D)

≤ (δ + 2)2

δ2
‖(±1

2
I + K∗

D)φ‖L2(∂D) .

We have proved the following result from [29].

Lemma 2.9 Let D ⊂ B1(0) be a star-shaped domain with respect to the
origin, where B1(0) is the disk of radius 1 and center 0. Define δ(D) :=
infx∈∂D〈x, νx〉. Then, for any φ ∈ L2

0(∂D),

‖φ‖L2(∂D) ≤

(

δ(D) + 2
)2

δ(D)2

∥
∥
∥
∥(±

1
2
I + K∗

D)φ
∥
∥
∥
∥

L2(∂D)

.

Estimate (2.28) will be useful in Chap. 4. A more refined one will be needed
in Chap. 3.
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Lemma 2.10 There exists a constant C depending only on the Lipschitz
character of D such that

‖φ‖L2(∂D) ≤ C
|k − 1|
k + 1

∥
∥
∥
∥

(
k + 1

2(k − 1)
I −K∗

D

)

φ

∥
∥
∥
∥

L2(∂D)

(2.29)

for all φ ∈ L2
0(∂D).

Proof. By (2.28), there is a constant C depending only on the Lipschitz
character of D such that

‖φ‖L2(∂D) ≤ C‖
(

1
2
I −K∗

D

)

φ‖L2(∂D)

for all φ ∈ L2
0(∂D). Hence we get

‖φ‖L2(∂D) ≤ C

∥
∥
∥
∥

(
k + 1

2(k − 1)
I −K∗

D

)

φ

∥
∥
∥
∥

L2(∂D)

+
C

|k − 1| ‖φ‖L2(∂D) .

It then follows that for k > C + 1

‖φ‖L2(∂D) ≤
C

1 − C
k−1

∥
∥
∥
∥

(
k + 1

2(k − 1)
I −K∗

D

)

φ

∥
∥
∥
∥

L2(∂D)

,

and hence, if k is larger than 2C + 1, then

‖φ‖L2(∂D) ≤ 2C
∥
∥
∥
∥

(
k + 1

2(k − 1)
I −K∗

D

)

φ

∥
∥
∥
∥

L2(∂D)

.

When k is smaller than 1/(C + 1), we can proceed in the same way starting
from the estimate

‖φ‖L2(∂D) ≤ C

∥
∥
∥
∥

(

−1
2
I −K∗

D

)

φ

∥
∥
∥
∥

L2(∂D)

.

Now suppose that |k − 1| is small, or, equivalently, λ is large. Then

‖φ‖L2(∂D) ≤
1
λ
‖λφ‖L2(∂D) ≤

1
λ
‖(λI −K∗

D)φ‖L2(∂D) +
1
λ
‖K∗

Dφ‖L2(∂D) .

Since ‖K∗
Dφ‖L2(∂D) ≤ C‖φ‖L2(∂D) for some C then, if λ > 2C, we get

‖φ‖L2(∂D) ≤
2
λ
‖(λI −K∗

D)φ‖L2(∂D) .

Since the norm on the right-hand side of (2.29) depends continuously on
k, by a compactness argument, the proof is complete. ��

We will also need the following theorem due to Verchota [258].
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Theorem 2.11 Let D be a bounded Lipschitz domain in IRd. Then the
single layer potential SD maps L2(∂D) into W 2

1 (∂D) boundedly and KD :
W 2

1 (∂D) →W 2
1 (∂D) is a bounded operator.

Proof. That SD maps L2(∂D) into W 2
1 (∂D) boundedly is clear. In fact, by

Corollary 2.7, (2.12), and Theorem 2.8, we get

∥
∥
∥
∥
∂(SDf)
∂T

∥
∥
∥
∥

L2(∂D)

≈
∥
∥
∥
∥
∥

∂(SDf)
∂ν

∣
∣
∣
∣
−

∥
∥
∥
∥
∥

L2(∂D)

≈ ‖(−1
2
I + K∗

D)f‖L2(∂D) ≤ C‖f‖L2(∂D) .

Thus we have
‖SDf‖W 2

1 (∂D) ≤ C‖f‖L2(∂D) .

Given h ∈ W 2
1 (∂D), let v be the solution to the problem ∆v = 0 in D and

v = h on ∂D. Then v ∈ W 1,2(D). By the Green representation, we get

SD

(
∂v

∂ν

∣
∣
−

)

(x) = DD(v|−)(x), x ∈ IRd \D .

It then follows from (2.13) that

(−1
2
I + KD)h = SD

(
∂v

∂ν

∣
∣
−

)

on ∂D .

Therefore we get

‖KDh‖W 2
1 (∂D) ≤

1
2
‖h‖W 2

1 (∂D) +
∥
∥
∥
∥SD

(
∂v

∂ν

∣
∣
+

)∥
∥
∥
∥

W 2
1 (∂D)

≤ 1
2
‖h‖W 2

1 (∂D) + C

∥
∥
∥
∥
∂v

∂ν

∣
∣
+

∥
∥
∥
∥

L2(∂D)

≤ C‖h‖W 2
1 (∂D) ,

where the last inequality follows from Corollary 2.7. Thus we obtain that
KD : W 2

1 (∂D) →W 2
1 (∂D) is bounded. ��

We conclude this section by investigating the invertibility of the single
layer potential. We shall see that complications arise when d = 2.

Lemma 2.12 Let D be a bounded Lipschitz domain in IRd. Let φ ∈ L2(∂D)
satisfy SDφ = 0 on ∂D.

(i) If d ≥ 3, then φ = 0.
(ii) If d = 2 and

∫
∂D

φ = 0, then φ = 0.

Proof. The single layer potential u = SDφ satisfies ∆u = 0 in IRd \D,u = 0
on ∂D and as |x| → +∞, we have u(x) = O(|x|2−d) when d ≥ 3, but
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u(x) =
1
2π

(
∫

∂D

φ) log |x| +O(|x|−1) when d = 2 .

Thus, provided we assume that
∫

∂D
φ = 0 when d = 2, we have u(x) = 0(|x|−1)

as |x| → +∞. Therefore, for large R,

∫

BR(0)\D

|∇u|2 =
∫

∂BR(0)

∂u

∂ν
u =

{
O(R2−d) if d ≥ 3 ,
O(R−2) if d = 2 .

Sending R → +∞, we deduce that ∇u = 0 in IRd \D, and thus u is constant
in IRd \D. Since u = 0 on ∂D, it follows that u = 0 in IRd \D. But SDφ = 0
in D, and hence φ = ∂SDφ/∂ν|+ − ∂SDφ/∂ν|− = 0 on ∂D. ��

Theorem 2.13 Let D be a bounded Lipschitz domain in IRd.

(i) If d ≥ 3, then SD : L2(∂D) →W 2
1 (∂D) has a bounded inverse.

(ii) If d = 2, then the operator A : L2(∂D) × IR →W 2
1 (∂D) × IR defined by

A(φ, a) =
(

SDφ+ a,

∫

∂D

φ

)

has a bounded inverse.
(iii) Suppose d = 2 and let (φe, a) ∈ L2(∂D) × IR denote the solution of the

system {
SDφe + a = 0 ,
∫

∂D φe = 1 ,

then SD : L2(∂D) →W 2
1 (∂D) has a bounded inverse if and only if a �= 0.

Proof. Since W 2
1 (∂D) ↪→ L2(∂D) is compact, it follows from Theorem 2.11

that the operator SD : L2(∂D) →W 2
1 (∂D) is Fredholm with zero index. But,

by Lemma 2.12, we have KerSD = {0} when d ≥ 3, and therefore SD has a
bounded inverse.

We now establish that A has a bounded inverse. Since SD : L2(∂D) →
W 2

1 (∂D) is Fredholm with zero index we need only to prove injectivity. In
fact, if SDφ + a = 0 and

∫
∂D

φ = 0, then
∫

∂D
SDφφ = 0. But

∫
∂D

SDφφ =∫
IRd |∇φ|2, and consequently, SDφ = 0 since SDφ→ 0 as |x| → +∞. Accord-

ing to Lemma 2.12 this implies φ = 0 and in turn a = 0.
Turning to part (iii), we note that if a = 0, then SD cannot be invertible

because SDφe = 0. Thus, suppose that a �= 0 and there exists φ ∈ L2(∂D)
such that SDφ = 0. Define φ0 = φ− (

∫
∂D

φ)φe, and observe that

SDφ0 = −(
∫

∂D

φ)SDφe = a

∫

∂D

φ and
∫

∂D

φ0 = 0 .

Hence
∫

∂D SDφ0 φ0 = 0 and therefore φ0 = 0. In turn,
∫

∂D φ = 0 because
a �= 0, giving ψ = 0 by Lemma 2.12. Thus, the homogeneous equation SDφ = 0
has only the trivial solution, and SD is invertible. ��
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2.3 Neumann and Dirichlet Functions

Let Ω be a bounded Lipschitz domain in IRd, d ≥ 2. Let N(x, z) be the
Neumann function for ∆ in Ω corresponding to a Dirac mass at z. That is,
N is the solution to





∆xN(x, z) = −δz in Ω ,

∂N

∂νx

∣
∣
∂Ω

= − 1
|∂Ω| ,

∫

∂Ω

N(x, z) dσ(x) = 0 for z ∈ Ω .
(2.30)

Note that the Neumann function N(x, z) is defined as a function of x ∈ Ω
for each fixed z ∈ Ω. The operator defined by N(x, z) is the solution operator
for the Neumann problem






∆U = 0 in Ω ,

∂U

∂ν

∣
∣
∣
∣
∂Ω

= g ,
(2.31)

namely, the function U defined by

U(x) :=
∫

∂Ω

N(x, z)g(z)dσ(z)

is the solution to (2.31) satisfying
∫

∂Ω
U dσ = 0.

Now we discuss some properties of N as a function of x and z.

Lemma 2.14 The Neumann function N is symmetric in its arguments, that
is, N(x, z) = N(z, x) for x �= z ∈ Ω. It furthermore has the form

N(x, z) =






− 1
2π

log |x− z| +R2(x, z) if d = 2 ,

1
(d− 2)ωd

1
|x− z|d−2

+Rd(x, z) if d ≥ 3 ,
(2.32)

where Rd(·, z) belongs to W
3
2 ,2(Ω) for any z ∈ Ω, d ≥ 2 and solves






∆xRd(x, z) = 0 in Ω ,

∂Rd

∂νx

∣
∣
∂Ω

= − 1
|∂Ω| +

1
ωd

〈x− z, νx〉
|x− z|d for x ∈ ∂Ω .

Proof. Pick z1, z2 ∈ Ω with z1 �= z2. Let Br(zp) = {|x − zp| < r}, p = 1, 2.
Choose r > 0 so small that Br(z1) ∩ Br(z2) = ∅. Set N1(x) = N(x, z1) and
N2(x) = N(x, z2). We apply Green’s formula in Ω′ = Ω \ Br(z1) ∪Br(z2) to
get
∫

Ω′

(

N1∆N2 −N2∆N1

)

dx =
∫

∂Ω

(

N1
∂N2

∂ν
−N2

∂N1

∂ν

)

dσ

−
∫

∂Br(z1)

(

N1
∂N2

∂ν
−N2

∂N1

∂ν

)

dσ −
∫

∂Br(z2)

(

N1
∂N2

∂ν
−N2

∂N1

∂ν

)

dσ .
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Since Np is harmonic for x �= zp, p = 1, 2, ∂N1/∂ν = ∂N2/∂ν = −1/|∂Ω|, and∫
∂Ω(N1 −N2) dσ = 0, we have
∫

∂Br(z1)

(

N1
∂N2

∂ν
−N2

∂N1

∂ν

)

dσ +
∫

∂Br(z2)

(

N1
∂N2

∂ν
−N2

∂N1

∂ν

)

dσ = 0 .

Thanks to (2.32) which will be proved shortly, the left hand side of the above
has the same limit as the left hand side of the following as r → 0 :
∫

∂Br(z1)

(

Γ
∂N2

∂ν
−N2

∂Γ

∂ν

)

dσ +
∫

∂Br(z2)

(

N1
∂Γ

∂ν
− Γ

∂N1

∂ν

)

dσ = 0 .

Since
∫

∂Br(z1)

Γ
∂N2

∂ν
dσ → 0 ,

∫

∂Br(z2)

Γ
∂N1

∂ν
dσ → 0 as r → 0

and
∫

∂Br(z1)

N2
∂Γ

∂ν
dσ → N2(z1) ,

∫

∂Br(z2)

N1
∂Γ

∂ν
dσ → N1(z2) as r → 0 ,

we obtain N2(z1) −N1(z2) = 0, or equivalently N(z2, z1) = N(z1, z2) for any
z1 �= z2 ∈ Ω.

Now let Rd, d ≥ 2, be defined by

Rd(x, z) =






N(x, z) +
1
2π

log |x− z| if d = 2 ,

N(x, z) +
1

(2 − d)ωd

1
|x− z|d−2

if d ≥ 3 .

Since Rd(·, z) is harmonic in Ω and ∂Rd(·, z)/∂ν ∈ L2(∂Ω) then it follows
from [162] that Rd(·, z) ∈ W

3
2 ,2(Ω) for any z ∈ Ω. ��

For D, a subset of Ω, let

NDf(x) :=
∫

∂D

N(x, y)f(y) dσ(y) .

The following lemma from [17] relates the fundamental solution with the
Neumann function.

Lemma 2.15 For z ∈ Ω and x ∈ ∂Ω, let Γz(x) := Γ (x − z) and Nz(x) :=
N(x, z). Then

(

−1
2
I + KΩ

)

(Nz)(x) = Γz(x) modulo constants, x ∈ ∂Ω , (2.33)

or, to be more precise, for any simply connected Lipschitz domain D compactly
contained in Ω and for any g ∈ L2

0(∂D), we have for any x ∈ ∂Ω
∫

∂D

(

−1
2
I + KΩ

)

(Nz)(x)g(z) dσ(z) =
∫

∂D

Γz(x)g(z) dσ(z) . (2.34)
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Proof. Let f ∈ L2
0(∂Ω) and define

u(z) :=
∫

∂Ω

(

−1
2
I + KΩ

)

(Nz)(x)f(x) dσ(x), z ∈ Ω .

Then

u(z) =
∫

∂Ω

N(x, z)
(

−1
2
I + K∗

Ω

)

f(x) dσ(x) .

Therefore, ∆u = 0 in Ω and

∂u

∂ν

∣
∣
∣
∣
∂Ω

= (−1
2
I + K∗

Ω)f .

Hence by the uniqueness modulo constants of a solution to the Neumann
problem we have

u(z)− SΩf(z) = constant, z ∈ Ω .

Thus if g ∈ L2
0(∂D), then we obtain
∫

∂Ω

∫

∂D

(

−1
2
I + KΩ

)

(Nz)(x)g(z)f(x) dσ(z) dσ(x)

=
∫

∂Ω

∫

∂D

Γz(x)g(z)f(x) dσ(z) dσ(x) .

Since f is arbitrary, we have equation (2.33) or, equivalently, (2.34). This
completes the proof. ��

In Chap. 4 we will be dealing with the inclusions of the form D = εB + z
where B is a bounded Lipschitz domain in IRd. For the purpose of using in
Chap. 4, we now expand N(x, εy + z) asymptotically for x ∈ ∂Ω, z ∈ Ω, and
y ∈ ∂B, and as ε→ 0. By (2.33) we have the following relation:
(

−1
2
I+KΩ

)[

N(·, εy+z)
]

(x) = Γ (x−z−εy) modulo constants, x ∈ ∂Ω .

Using the Taylor expansion

Γ (x− εy) =
+∞∑

|j|=0

(−1)j

j!
ε|j|∂jΓ (x)yj ,

we obtain
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(

−1
2
I + KΩ

)[

N(·, εy + z)
]

(x)

=
+∞∑

|j|=0

(−1)j

j!
ε|j|∂j(Γ (x− z))yj

=
+∞∑

|j|=0

(−1)j

j!
ε|j|∂j

x

((

−1
2
I + KΩ

)

N(·, z)(x)
)

yj

=
+∞∑

|j|=0

1
j!
ε|j|
((

−1
2
I + KΩ

)

∂j
zN(·, z)(x)

)

yj

=
(

−1
2
I + KΩ

)



+∞∑

|j|=0

1
j!
ε|j|∂j

zN(·, z)yj



 (x) .

Since
∫

∂Ω
N(x,w) dσ(x) = 0 for all w ∈ Ω, we have the following asymptotic

expansion of the Neumann function.

Lemma 2.16 For x ∈ ∂Ω, z ∈ Ω, and y ∈ ∂B, and as ε→ 0,

N(x, εy + z) =
+∞∑

|j|=0

1
j!
ε|j|∂j

zN(x, z)yj . (2.35)

Now we turn to the properties of the Dirichlet function. Let G(x, z) be the
Green’s function for the Dirichlet problem in Ω, that is, the unique solution
to {

∆xG(x, z) = −δz in Ω ,

G(x, z) = 0 on ∂Ω ,

and let Gz(x) = G(x, z). Then for any x ∈ ∂Ω, and z ∈ Ω we can prove that

(
1
2
I + K∗

Ω

)−1(
∂Γz(y)
∂νy

)

(x) = −∂Gz

∂νx
(x) . (2.36)

Moreover, we would like to mention the following important properties of
G [136]:

(i) the Green’s function G is symmetric in Ω ×Ω;
(ii) the maximum principle implies that for x, z ∈ Ω with x �= z

0 > G(x, z) > −Γ (x− z) for d ≥ 3 ,

0 > G(x, z) > −Γ (x− z) +
1
2π

log diam(Ω) for d = 2 ;

(iii) the Green’s function for the ball BR(0) is given by
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G(x, z) =
1

(2 − d)ωd

(

|x− z|2−d −
∣
∣
∣
∣
R

|x|x−
|x|
R
z

∣
∣
∣
∣

2−d)

for d ≥ 3 ,

G(x, z) =
1
2π

(

log |x− z| − log
∣
∣
∣
∣
R

|x|x−
|x|
R
z

∣
∣
∣
∣

)

for d = 2 ;

(iv) the normal derivative of the Green’s function on the sphere ∂BR(0) is
given by

∂G

∂ν
(x, z) =

R2 − |z|2
ωdR|x− z|d for any z ∈ BR(0) and x ∈ ∂BR(0) .

2.4 Representation Formula

Let Ω be a bounded domain in IRd with a connected Lipschitz boundary
and conductivity equal to 1. Consider a bounded domain D ⊂⊂ Ω with
a connected Lipschitz boundary and conductivity 0 < k �= 1 < +∞. Let
g ∈ L2

0(∂Ω), and let u and U be the (variational) solutions of the Neumann
problems 





∇ ·
(

1 + (k − 1)χ(D)
)

∇u = 0 in Ω ,

∂u

∂ν

∣
∣
∣
∣
∂Ω

= g ,

∫

∂Ω

u(x) dσ(x) = 0 ,

(2.37)

and 




∆U = 0 in Ω ,

∂U

∂ν

∣
∣
∣
∣
∂Ω

= g ,

∫

∂Ω

U(x) dσ(x) = 0 ,

(2.38)

where χ(D) is the characteristic function of D. Clearly, the Lax-Milgram
lemma shows that, given g ∈ L2

0(∂Ω), there exist unique u and U in W 1,2(Ω)
which solve (2.37) and (2.38), respectively.

At this point we have all the necessary ingredients to state and prove a
decomposition formula of the steady-state voltage potential u into a harmonic
part and a refraction part which will be the main tool for both deriving
the asymptotic expansion in Chap. 4 and providing efficient reconstruction
algorithms in Chap. 5. This decomposition formula is unique and seems to
inherit geometric properties of the inclusion D, as it is shown in Chap. 3.

The following theorem was proved in [168, 169, 171].

Theorem 2.17 Suppose that D is a domain compactly contained in Ω with
a connected Lipschitz boundary and conductivity 0 < k �= 1 < +∞. Then the
solution u of the Neumann problem (2.37) is represented as
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u(x) = H(x) + SDφ(x), x ∈ Ω , (2.39)

where the harmonic function H is given by

H(x) = −SΩ(g)(x) + DΩ(f)(x), x ∈ Ω , f := u|∂Ω , (2.40)

and φ ∈ L2
0(∂D) satisfies the integral equation

(
k + 1

2(k − 1)
I −K∗

D

)

φ =
∂H

∂ν

∣
∣
∣
∣
∂D

on ∂D . (2.41)

The decomposition (2.39) into a harmonic part and a refraction part is unique.
Moreover, ∀ n ∈ IN, there exists a constant Cn = C(n,Ω, dist(D, ∂Ω)) inde-
pendent of |D| and the conductivity k such that

‖H‖Cn(D) ≤ Cn‖g‖L2(∂Ω) . (2.42)

Furthermore, the following holds

H(x) + SDφ(x) = 0, ∀ x ∈ IRd \Ω . (2.43)

Proof. Consider the following two phase transmission problem:





∇ ·
(

1 + (k − 1)χ(D)
)

∇v = 0 in IRd \ ∂Ω ,

v
∣
∣
− − v

∣
∣
+

= f on ∂Ω ,

∂v

∂ν

∣
∣
∣
∣
−
− ∂v

∂ν

∣
∣
∣
∣
+

= g on ∂Ω ,

v(x) = O(|x|1−d) as |x| → ∞ .

(2.44)

Let v1 := −SΩg + DΩf + SDφ in IRd. Since φ ∈ L2
0(∂D) and g ∈ L2

0(∂Ω),
v1(x) = O(|x|1−d) and hence v1 is a solution of (2.44) by the jump formulae
(2.12) and (2.13). If we put v2 = u in Ω and v2 = 0 in IRd \Ω, then v2 is also
a solution of (2.44). Therefore, in order to prove (2.39) and (2.43), it suffices
to show that the problem (2.44) has a unique solution in W 1,2

loc (IRd \ ∂Ω).
Suppose that v ∈ W 1,2

loc (IRd \ ∂Ω) is a solution of (2.44) with f = g = 0.
Then v is a weak solution of ∇· (1+(k−1)χ(D))∇v = 0 in the entire domain
IRd. Therefore, for a large R,

∫

BR(0)

|∇v|2 ≤ 1 + k

k

∫

BR(0)

(

1 + (k − 1)χ(D)
)

|∇v|2

≤ 1 + k

k

∫

∂BR(0)

v
∂v

∂ν

≤ −1 + k

k

∫

IRd\BR(0)

|∇v|2 ≤ 0 ,
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where BR(0) = {|x| < R}. This inequality holds for all R and hence v is
constant. Since v(x) → 0 at the infinity, we conclude that v ≡ 0.

To prove the uniqueness of the representation, suppose thatH ′ is harmonic
in Ω and

H + SDφ = H ′ + SDφ
′ in Ω .

Then SD(φ− φ′) is harmonic in Ω and hence

∂

∂ν
SD(φ − φ′)

∣
∣
∣
∣
−

=
∂

∂ν
SD(φ− φ′)

∣
∣
∣
∣
+

on ∂D.

It then follows from (2.12) that φ− φ′ = 0 on ∂D and H = H ′.
We finally prove estimate (2.42). Suppose that dist(D, ∂Ω) > c0 for some

constant c0 > 0. From the definition of H in (2.40) it is easy to see that

‖H‖Cn(D) ≤ Cn

(

‖g‖L2(∂Ω) + ‖u|∂Ω‖L2(∂Ω)

)

, (2.45)

where Cn depends only on n, ∂Ω, and c0. It suffices then to show as in
Corollary 2.7 that

‖u|∂Ω‖L2(∂Ω) ≤ C ‖g‖L2(∂Ω) .

To do so, we use the Rellich identity. Let α be a vector field supported in the
set dist(x, ∂Ω) < c0 such that α · νx ≥ δ for some δ > 0, ∀ x ∈ ∂Ω. Using the
Rellich identity (2.20) with this α, we can show that

∥
∥
∥
∥
∂u

∂T

∥
∥
∥
∥

L2(∂Ω)

≤ C
(
‖g‖L2(∂Ω) + ‖∇u‖L2(Ω\D)

)
,

where C depends only on ∂Ω and c0. Observe that

‖∇u‖2
L2(Ω\D)

≤ C

∫

Ω

(

1 + (k − 1)χ(D)
)

∇u · ∇u dx

≤ C

∫

∂Ω

gu dσ

≤ C ‖g‖L2(∂Ω) ‖u|∂Ω‖L2(∂Ω) .

Since
∫

∂Ω
u dσ = 0, it follows from the Poincaré inequality (2.1) that

‖u|∂Ω‖L2(∂Ω) ≤ C

∥
∥
∥
∥
∂u

∂T

∥
∥
∥
∥

L2(∂Ω)

.

Thus we obtain

‖u|∂Ω‖2
L2(∂Ω) ≤ C

(

‖g‖2
L2(∂Ω) + ‖g‖L2(∂Ω) ‖u|∂Ω‖L2(∂Ω)

)

,

and hence
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‖u|∂Ω‖L2(∂Ω) ≤ C ‖g‖L2(∂Ω) .

From (2.45) we finally obtain (2.42). ��
It is important to note that based on this representation formula, Kang

and Seo proved global uniqueness results for the inverse conductivity problem
with one measurement when the conductivity inclusion D is a disk or a ball
in the three-dimensional space [168, 170]. See Appendix A.4.2.

Another useful expression of the harmonic part H of u is given in the
following lemma.

Lemma 2.18 We have

H(x) =






u(x) − (k − 1)
∫

D

∇yΓ (x− y) · ∇u(y) dy x ∈ Ω ,

−(k − 1)
∫

D

∇yΓ (x− y) · ∇u(y) dy x ∈ IRd \Ω .

(2.46)

Proof. We claim that

φ = (k − 1)
∂u

∂ν

∣
∣
∣
∣
−
. (2.47)

In fact, it follows from the jump formula (2.12) and the equation (2.42) that

∂u

∂ν

∣
∣
∣
∣
−

=
∂H

∂ν
+

∂

∂ν
SDφ

∣
∣
∣
∣
−

=
∂H

∂ν
+ (−1

2
I + K∗

D)φ =
1

k − 1
φ .

Then (2.46) follows from (2.43) and (2.47) by Green’s formula. ��

Let g ∈ L2
0(∂Ω) and

U(y) :=
∫

∂Ω

N(x, y)g(x) dσ(x) .

Then U is the solution to the Neumann problem (2.38) and the following
representation holds.

Theorem 2.19 The solution u of (2.37) can be represented as

u(x) = U(x) −NDφ(x), x ∈ ∂Ω , (2.48)

where φ is defined in (2.41).

Proof. By substituting (2.39) into (2.40), we obtain

H(x) = −SΩ(g)(x) + DΩ

(

H |∂Ω + (SDφ)|∂Ω

)

(x), x ∈ Ω.

It then follows from (2.13) that
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(
1
2
I−KΩ

)

(H |∂Ω) = −(SΩg)|∂Ω +
(

1
2
I+KΩ

)

((SDφ)|∂Ω) on ∂Ω . (2.49)

Since by Green’s formula U = −SΩ(g) + DΩ(U |∂Ω) in Ω, we have
(

1
2
I −KΩ

)

(U |∂Ω) = −(SΩg)|∂Ω . (2.50)

Since φ ∈ L2
0(∂D), it follows from (2.33) that

−
(

1
2
I −KΩ

)

((NDφ)|∂Ω) = (SDφ)|∂Ω . (2.51)

Recall that we have established in the course of the proof of Lemma 2.15 that
(

1
2
I −KΩ

)

f = 0 , f ∈ L2(∂Ω) ⇒ f = constant. (2.52)

Then, from (2.49), (2.50), and (2.51), we conclude that
(

1
2
I −KΩ

)(

H |∂Ω − U |∂Ω +
(

1
2
I + KΩ

)

((NDφ)|∂Ω)
)

= 0 .

Therefore, we have

H |∂Ω − U |∂Ω +
(

1
2
I + KΩ

)

((NDφ)|∂Ω) = C (constant). (2.53)

Note that

(
1
2
I + KΩ)((NDφ)|∂Ω) = (NDφ)|∂Ω + (SDφ)|∂Ω .

Thus we get from (2.39) and (2.53) that

u|∂Ω = U |∂Ω − (NDφ)|∂Ω + C . (2.54)

Since all the functions entering in (2.54) belong to L2
0(∂Ω), we conclude that

C = 0, and the theorem is proved. ��
We have a similar representation for solutions of the Dirichlet problem. Let

f ∈ W 2
1
2
(∂Ω), and let v and V be the (variational) solutions of the Dirichlet

problems: 




∇ ·
(

1 + (k − 1)χ(D)
)

∇v = 0 in Ω ,

v = f on ∂Ω ,

(2.55)

and {
∆V = 0 in Ω ,

V = f on ∂Ω .
(2.56)

The following representation theorem holds.
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Theorem 2.20 Let v and V be the solution of the Dirichlet problems (2.55)
and (2.56). Then ∂v/∂ν on ∂D can be represented as

∂v

∂ν
(x) =

∂V

∂ν
(x) − ∂

∂ν
GDφ(x), x ∈ ∂Ω , (2.57)

where φ is defined in (2.41) with H given by (2.40) and g = ∂v/∂ν on ∂Ω,
and

GDφ(x) :=
∫

∂D

G(x, y)φ(y) dσ(y) .

Theorem 2.20 can be proved in the same way as Theorem 2.19. In fact, it
is simpler because of the solvability of the Dirichlet problem or, equivalently,
the invertibility of (1/2) I + K∗

Ω. So we omit the proof.

2.5 Energy Identities

The following energy identities hold [172, 10].

Lemma 2.21 The solutions u and U of (2.37) and (2.38) satisfy
∫

Ω

|∇(u − U)|2 dx+ (k − 1)
∫

D

|∇u|2 dx =
∫

∂Ω

(U − u)g dσ , (2.58)
∫

Ω

(

1 + (k − 1)χ(D)
)

|∇(u − U)|2 dx− (k − 1)
∫

D

|∇U |2 dx (2.59)

= −
∫

∂Ω

(U − u)g dσ .

Proof. From the weak formulations of the Neumann problems (2.37) and
(2.38), it follows that

∫

Ω

∇(u− U) · ∇η dx+ (k − 1)
∫

D

∇u · ∇η dx = 0 , (2.60)

for every test function η ∈ W 1,2(Ω). Substituting η = u in (2.60) and inte-
grating by parts, we have

∫

Ω

|∇(u − U)|2 dx+ (k − 1)
∫

D

|∇u|2 dx =
∫

∂Ω

(U − u)g dσ ,

while substituting η = u− U yields
∫

Ω

(1+(k−1)χ(D))|∇(u−U)|2 dx−(k−1)
∫

D

|∇U |2 dx = −
∫

∂Ω

(U−u)g dσ .

Then Lemma 2.21 immediately follows from the above two identities. ��
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Generalized Polarization Tensors

In this chapter we introduce the notion of generalized polarization tensors
(GPT’s) associated with a bounded Lipschitz domain B and a conductivity
k and study their basic properties. The GPT’s are the basic building blocks
for the full asymptotic expansions of the boundary voltage perturbations due
to the presence of a small conductivity inclusion D of the form D = εB + z
with conductivity k inside a conductor Ω with conductivity 1. See Chap. 4.

The use of these GPT’s leads to stable and accurate algorithms for the
numerical computations of the steady-state voltage in the presence of small
conductivity inclusions. It is known that small size features cause difficulties
in the numerical solution of the conductivity problem by the finite element or
finite difference methods. This is because such features require refined meshes
in their neighborhoods, with their attendant problems [174].

On the other hand, it is important from an imaging point of view to
precisely characterize these GPT’s and derive some of their properties, such
as symmetry, positivity, and optimal bounds on their elements, for developing
efficient algorithms for reconstructing conductivity inclusions of small volume.
The GPT’s seem to contain significant information on the domain B and its
conductivity k which is yet to be investigated.

The concepts of higher-order polarization tensors generalize those of clas-
sical Pólya–Szegö polarization tensors which have been extensively studied
in the literature by many authors for various purposes [72, 24, 73, 105, 200,
198, 123, 180, 186, 231, 232, 241, 95]. The notion of Pólya–Szegö polarization
tensor appeared in problems of potential theory related to certain problems
arising in hydrodynamics and in electrostatics. If the conductivity k is zero,
namely, if B is insulated, the polarization tensor of Pólya–Szegö is called the
virtual mass. The concept of polarization tensors also occurs in several other
interesting contexts, in particular in asymptotic models of dilute composites
[212, 24, 70, 104] and in low-frequency scattering of acoustic and electromag-
netic waves [180, 94].

Our plan of this chapter is as follows. We first give two slightly different
but equivalent definitions of the GPT’s. We then prove that the knowledge of

H. Ammari and H. Kang: LNM 1846, pp. 41–64, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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all the GPT’s uniquely determines the domain and the constitutive parameter.
Furthermore, we show important symmetric properties and positivity of the
GPT’s and derive isoperimetric inequalities satisfied by the tensor elements
of the GPT’s. We also establish relations that can be used to provide bounds
on the weighted volume. We understand an isoperimetric inequality to be
any inequality which relates two or more geometric and/or physical quantities
associated with the same domain. The inequality must be optimal in the sense
that the equality sign holds for some domain or in the limit as the domain
degenerates [229]. The classical isoperimetric inequality–the one after which all
such inequalities are named–states that of all plane curves of given perimeter
the circle encloses the largest area. This inequality was known already to the
Greeks. The reader is referred to [232, 40, 229, 230] for a variety of important
isoperimetric inequalities.

We conclude the chapter by considering the polarization tensors associ-
ated with multiple inclusions. We prove their symmetry and positivity. We
also estimate their eigenvalues in terms of the total volume of the inclusions.
Explicit formulae for the GPT’s in the multi-disk case are given in [21].

The results presented here will be applied in Chap. 5 to obtain accu-
rate reconstructions of small conductivity inclusions from a small number of
boundary measurements. Note that similar results have been established for
the (generalized) anisotropic polarization tensors in [167]. These tensors are
defined in the same way as the GPT’s. However, they occur due to not only
the presence of discontinuity, but also the difference of the anisotropy.

3.1 Definition

Let B be a Lipschitz bounded domain in IRd and let the conductivity of B be
k, 0 < k �= 1 < +∞. Denote λ := (k + 1)/(2(k − 1)).

Definition 3.1 For a multi-index i = (i1, . . . , id) ∈ INd, let ∂if = ∂i1
1 · · · ∂id

d f

and xi := xi1
1 · · ·xid

d . For i, j ∈ INd, we define the generalized polarization
tensor Mij by

Mij :=
∫

∂B

yjφi(y) dσ(y) , (3.1)

where φi is given by

φi(y) := (λI −K∗
B)−1

(

νx · ∇xi

)

(y), y ∈ ∂B . (3.2)

If |i| = |j| = 1, we denote Mij by (mpq)d
p,q=1 and call M = (mpq)d

p,q=1 the
polarization tensor of Pólya–Szegö.

Lemma 3.2 For any multi-index i = (i1, . . . , id) ∈ INd there is a unique
solution ψi of the following transmission problem:
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




∆ψi(x) = 0, x ∈ B ∪ (IRd \B) ,

ψi

∣
∣
∣
∣
+

(x) − ψi

∣
∣
∣
∣
−

(x) = 0 x ∈ ∂B ,

∂ψi

∂ν

∣
∣
∣
∣
+

(x) − k
∂ψi

∂ν

∣
∣
∣
∣
−

(x) = ν · ∇xi x ∈ ∂B ,

ψi(x) → 0 as |x| → ∞ if d = 3 ,

ψi(x) −
1
2π

log |x|
∫

∂B

ν · ∇yi dσ(y) → 0 as |x| → ∞ if d = 2 .

(3.3)

Moreover, ψi satisfies the following decay estimate at infinity

ψi(x) − Γ (x)
∫

∂B

ν · ∇yi dσ(y) = O

(
1

|x|d−1

)

as |x| → ∞ . (3.4)

Proof. Existence and uniqueness of ψi can be established using single layer
potentials with suitably chosen densities. Fairly simple manipulations show
that ∂ψi/∂ν|− satisfies the integral equation

(λI−K∗
B)

(
∂ψi

∂ν

∣
∣
∣
∣
−

)

(x) =
1

k − 1

(

− I

2
+K∗

B

)

(ν ·∇yi)(x) , x ∈ ∂B . (3.5)

Since KB(1) = 1/2 then
∫

∂B

(−I
2

+ K∗
B)(ν · ∇yi)(x) dσ(x) =

∫

∂B

(ν · ∇xi)(−I
2

+ KB)(1) dσ(x) = 0 ,

and consequently, according to Theorem 2.8, there exists a unique solution
∂ψi/∂ν|− ∈ L2

0(∂B) to the integral equation (3.5). Furthermore, we can ex-
press ψi(x) for all x ∈ IRd as follows

ψi(x) =
1

k − 1
SB(λI −K∗

B)−1(ν · ∇yi)(x) , x ∈ IRd . (3.6)

To obtain the behavior at infinity of ψi we write

ψi(x) =
1

k − 1

∫

∂B

(

Γ (x− y) − Γ (x)
)

(λI −K∗
B)−1(ν · ∇zi)(y) dσ(y)

+ Γ (x)
1

k − 1

∫

∂B

(λI −K∗
B)−1(ν · ∇zi)(y) dσ(y) .

Since
∫

∂B

(λI −K∗
B)−1(ν · ∇yi)(z) dσ(z) = (k − 1)

∫

∂B

ν · ∇yi dσ(y) ,

we obtain
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ψi(x) − Γ (x)
∫

∂B

ν · ∇yi dσ(y)

=
1

k − 1

∫

∂B

(

Γ (x− y) − Γ (x)
)

(λI −K∗
B)−1(ν · ∇zi)(y) dσ(y)

and therefore by the Cauchy–Schwarz inequality
∣
∣
∣
∣ψi(x) − Γ (x)

∫

∂B

ν · ∇yi dσ(y)
∣
∣
∣
∣ ≤ Ci ‖Γ (x− y) − Γ (x)‖L2(∂B) ,

which yields the desired decay estimate (3.4) due to the fact that

‖Γ (x− y) − Γ (x)‖L2(∂B) = O

(
1

|x|d−1

)

as |x| → +∞ .

Observe that uniqueness of a solution ψi to (3.3) can be proved in a
straightforward way from the decay estimate (3.4). Let θ be the difference
of two solutions, so that






∇ ·
(

1 + (k − 1)χ(B)
)

∇θ = 0 in IRd,

θ(x) = O

(

1/|x|d−1

)

as |x| → +∞ .

Integrating by parts yields the energy identity
∫

|y|<R

(1 + (k − 1)χ(B))|∇θ|2 =
∫

|y|=R

∂θ

∂ν
θ .

Now let R → +∞; we have

∂θ

∂ν
θ = O(R−2d+1) for |y| = R ,

so that ∫

IRd

(1 + (k − 1)χ(B))|∇θ|2 = 0 .

This implies that θ is constant in IRd, and, in fact θ = 0 in IRd because θ(y)
goes to 0 as |y| → +∞. ��

Lemma 3.3 For all i, j ∈ INd,Mij can be rewritten in the following form:

Mij = (k − 1)
∫

∂B

xj ∂x
i

∂ν
dσ(x) + (k − 1)2

∫

∂B

xj ∂ψi

∂ν

∣
∣
∣
∣
−

(x) dσ(x) , (3.7)

where ψi is the unique solution of the transmission problem (3.3).
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Proof. From the expression (3.6) of ψi and the identity

−1
2
I + K∗

B = −(λI −K∗
B) + (λ− 1

2
)I ,

we compute by using the jump relation (2.12)
∫

∂B

xj ∂ψi

∂ν

∣
∣
∣
∣
−

(x) =
1

k − 1

∫

∂B

xj

[

(λI −K∗
B)−1(−I

2
+ K∗

B)(ν · ∇yi)(x)
]

dσ(x)

=
1

k − 1

∫

∂B

xj

[

(λ− 1
2
)(λI −K∗

B)−1(ν · ∇yi)(x) − ν · ∇xi

]

dσ(x) ,

which immediately leads to (3.7). ��
Note that the definition (3.1) of GPT’s is valid even when k = 0 or ∞. If

k = 0, namely, if B is insulated, then

Mij :=
∫

∂B

yj

(

−1
2
I −K∗

B

)−1

(νy · ∇yi)(y) dσ(y) ,

while if k = ∞, namely, if B is perfectly conducting, then

Mij :=
∫

∂B

yj

(
1
2
I −K∗

B

)−1

(νy · ∇yi)(y) dσ(y) .

When |i| = |j| = 1, these definitions exactly match those introduced by
Pólya–Szegö [232] and Schiffer and Szegö [241].1

The polarization tensor M of Pólya–Szegö can be explicitly computed for
disks and ellipses in the plane and balls and ellipsoids in three-dimensional
space [180]. If, for example, B is an ellipse whose focal line is on either the
x1− or the x2−axis, its semi-major axis is of length a, and its semi-minor axis
is of length b then its polarization tensor of Pólya–Szegö M takes the form

M = (k − 1)|B|






a+ b

a+ kb
0

0
a+ b

b+ ka




 ,

where |B| denotes the volume of B.
The GPT’s seem to carry important geometric and potential theoretic

properties of the domain B. In the following sections we investigate these
properties.

3.2 Uniqueness Result

In this section we prove that the knowledge of all the GPT’s uniquely deter-
mines the geometry and the constitutive parameter of the inclusion. To do so,
1 When k = 0, it is called the virtual mass.
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we relate the GPT’s to the Dirichlet-to-Neumann (DtN) map. We prove that
we can recover the DtN map from all the GPT’s and hence, by a uniqueness
result due to Isakov [156] (see also Druskin [106] and Appendix A.4.1), B and
k are uniquely determined from all the GPT’s.

Let Ω be a bounded Lipschitz domain in IRd compactly containing B.
Recall that the DtN map Λ : W 2

1
2
(∂Ω) → W 2

− 1
2
(∂Ω) corresponding to k and

B is defined by, for f ∈W 2
1
2
(∂Ω),

Λ(f) :=
∂u

∂ν

∣
∣
∣
∣
∂Ω

,

where u is the unique weak solution of





∇ ·
(

1 + (k − 1)χ(B)
)

∇u = 0 in Ω ,

u|∂Ω = f .

Let Mij(k,B) denote the GPT’s associated with the domain B and con-
ductivity k. The following theorem asserts that we can recover the DtN map
and hence B and k from all the GPT’s.

Theorem 3.4 Let k1, k2 be numbers different from 1, and let B1, B2 be
bounded Lipschitz domains in IRd. Let Ω be a domain compactly containing
B1 ∪B2, and let Λp be the DtN map corresponding to kp and Bp, p = 1, 2, on
∂Ω. If Mij(k1, B1) = Mij(k2, B2) for all multi-indices i and j, then Λ1 = Λ2,
and hence k1 = k2 and B1 = B2.

Proof. Let λp = (kp + 1)/(2(kp − 1)), p = 1, 2. Let H be an entire harmonic
function in IRd. Since

Γ (x− y) =
∞∑

|j|=0

1
j!
∂jΓ (x)yj , |x| → ∞ , (3.8)

we obtain, for all sufficiently large x,

SBp(λpI −K∗
Bp

)−1(ν · ∇H |∂Bp)(x)

=
∫

∂Bp

Γ (x− y)(λpI −K∗
Bp

)−1(ν · ∇H |∂Bp)(y) dσ(y)

=
∞∑

|i|=1

∞∑

|j|=1

∂iH(0)
i!j!

∂jΓ (x)
∫

∂Bp

yj(λpI −K∗
Bp

)−1(ν · ∇yi|∂Bp)(y) dσ(y)

=
∞∑

|i|=1

∞∑

|j|=1

∂iH(0)
i!j!

∂jΓ (x)Mij(kp, Bp) .
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If Mij(k1, B1) = Mij(k2, B2) for all i and j, then

SB1(λ1I−K∗
B1

)−1(ν ·∇H |∂B1)(x) = SB2(λ2I−K∗
B2

)−1(ν ·∇H |∂B2)(x) (3.9)

for all large x. By the unique continuation property of harmonic functions, we
conclude that (3.9) holds for x ∈ IRd \B1 ∪B2 and entire harmonic functions
H .

Let f ∈ W 2
1
2
(∂Ω) and u1 be the W 1,2(Ω) solution of the boundary value

problem ∇ · ((1 + (k1 − 1)χ(B1))∇u) = 0 in Ω with u|∂Ω = f . Let H(x) :=
−SΩ(Λ1(f))(x) + DΩ(f)(x), x ∈ Ω. Then by the representation formula in
Theorem 2.17, we have

u1(x) = H(x) + SB1(λ1I −K∗
B1

)−1(ν · ∇H |∂B1)(x), x ∈ Ω .

Define u2 by

u2(x) = H(x) + SB2(λ2I −K∗
B2

)−1(ν · ∇H |∂B2)(x), x ∈ Ω .

Then u2 is a W 1,2(Ω) solution of the equation ∇·((1+(k2−1)χ(B2))∇u) = 0
in Ω. Since H is harmonic in Ω, there is a sequence Hn of entire harmonic
functions converging to H uniformly on every compact subset of Ω. Since
B1 ∪B2 is a compact subset of Ω, it follows from (3.9) that u1 = u2 in
Ω′ \B1 ∪B2, where Ω′ is any relatively compact subset of Ω. By the unique
continuation property of harmonic functions, we get u1 = u2 in Ω \B1 ∪B2.
Therefore, we obtain

Λ1(f) =
∂u1

∂ν

∣
∣
∣
∣
∂Ω

=
∂u2

∂ν

∣
∣
∣
∣
∂Ω

= Λ2(f) .

Since f is arbitrary, we conclude that Λ1 = Λ2.
In order to prove that k1 = k2 and B1 = B2, it suffices to refer to a result

of Isakov [156] that asserts that B and k are uniquely determined from the
Dirichlet-to-Neumann map Λ. See Appendix A.4.1. This completes the proof.
��

More physical properties of GPT’s are investigated in Sects. 3.3 and 3.5.

3.3 Symmetry and Positivity of GPT’s

We now consider the symmetry and positivity of GPT’s. When |i| = |j| = 1,
these properties were proved first in [73]. For symmetry we have the following
theorem.

Theorem 3.5 Suppose that ai and bj are constants such that
∑

i aiy
i and∑

j bjy
j are harmonic polynomials. Then

∑

i,j

aibjMij =
∑

i,j

aibjMji . (3.10)
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Proof. Note that
∑

i,j

aibjMij =
∫

∂B

∑

j

bjy
j
∑

i

aiφi(y) dσ(y) .

Put f(y) =
∑

i aiy
i, g(y) =

∑
j bjy

j , φ =
∑

i aiφi = (λI − K∗
B)−1(∂f

∂ν ), and
ψ = (λI−K∗

B)−1( ∂g
∂ν ). Then SBφ and SBψ satisfy the transmission conditions

∂

∂ν
SBφ|+ − k

∂

∂ν
SBφ|− = (k − 1)

∂f

∂ν

and
∂

∂ν
SBψ|+ − k

∂

∂ν
SBψ|− = (k − 1)

∂g

∂ν

on ∂B. Recall that
∑

i,j

aibjMij =
∫

∂B

gφ dσ and
∑

i,j

aibjMji =
∫

∂B

fψ dσ .

By (2.12) and the transmission condition, we have

∫

∂B

gφ dσ =
∫

∂B

g

[
∂SBφ

∂ν

∣
∣
∣
∣
+

− ∂SBφ

∂ν

∣
∣
∣
∣
−

]

dσ

= (k − 1)
∫

∂B

g
∂

∂ν
(SBφ+ f)

∣
∣
∣
∣
−
dσ .

(3.11)

We then immediately obtain
∫

∂B

gφ dσ = (k − 1)
∫

∂B

(SBψ + g)
∂

∂ν
(SBφ+ f)

∣
∣
∣
∣
−
dσ

−
∫

∂B

SBψ
∂

∂ν
SBφ

∣
∣
∣
∣
+

dσ +
∫

∂B

SBψ
∂

∂ν
SBφ

∣
∣
∣
∣
−
dσ

= (k − 1)
∫

B

∇(SBψ + g) · ∇(SBφ+ f) dx

+
∫

IRd\B

∇SBψ · ∇SBφdx+
∫

B

∇SBψ · ∇SBφdx .

Symmetry property (3.10) follows from the above identity. ��
Suppose that f = g in the proof of Theorem 3.5. It then follows from

(3.11) that ∫

∂B

fφ dσ = (k − 1)
∫

∂B

∂f

∂ν
(SBφ+ f) dσ . (3.12)

On the other hand, it follows from the transmission condition that
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∫

∂B

fφ dσ = (k − 1)
∫

∂B

(SBφ+ f)
∂

∂ν
(SBφ+ f)

∣
∣
∣
∣
−
dσ

− (k − 1)
∫

∂B

SBφ
∂

∂ν
SBφ

∣
∣
∣
∣
−
dσ − (k − 1)

∫

∂B

SBφ
∂f

∂ν
dσ

= (k − 1)
∫

∂B

(SBφ+ f)
∂

∂ν
(SBφ+ f)

∣
∣
∣
∣
−
dσ

−
(

1 − 1
k

)∫

∂B

SBφ
∂

∂ν
SBφ

∣
∣
∣
∣
+

dσ −
(

1 − 1
k

)∫

∂B

SBφ
∂f

∂ν
dσ .

(3.13)

Define quadratic forms QD(u) by

QD(u) :=
∫

D

|∇u|2 dx , (3.14)

where D is a Lipschitz domain in IRd. Then, by equating (3.12) and (3.13),
we obtain
∫

∂B

SBφ
∂f

∂ν
dσ =

k

k + 1
QB(SBφ+ f) +

1
k + 1

QIRd\B(SBφ) − k

k + 1
QB(f) .

Substituting this identity into (3.12), we get
∫

∂B

fφ dσ =
k(k − 1)
k + 1

QB(SBφ+ f) +
k − 1
k + 1

QIRd\B(SBφ)

+
k − 1
k + 1

QB(f) .

So we obtain the following theorem of positivity.

Theorem 3.6 Suppose that ai, i ∈ I, where I is a finite index set, are
constants such that f(y) =

∑
i∈I aiy

i is a harmonic polynomial. Let φ =
(λI −K∗

B)−1(∂f
∂ν ). Then

∑

i,j∈I

aiajMij =
k − 1
k + 1

[

kQB(SBφ+ f) +QIRd\B(SBφ) +QB(f)
]

. (3.15)

Theorem 3.6 says that if k > 1, then GPT’s are positive definite, and they
are negative definite if 0 < k < 1.

3.4 Bounds for the Polarization Tensor of Pólya–Szegö

Our aim of this section is to derive important isoperimetric inequalities satis-
fied by the elements of the polarization tensor of Pólya–Szegö.
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Let {ep}d
p=1 be an orthonormal basis of IRd. Denote

φp = (λI −K∗
B)−1(

∂xp

∂ν
), p = 1, . . . , d .

Consider the polarization tensor M = (mpq)d
p,q=1 of Pólya–Szegö associated

with B and k. From Theorem 3.6 it follows that

mpq =
k − 1
k + 1

[

k

∫

B

(∇SBφp+ep)·(∇SBφq+eq)+
∫

IRd\B

∇SBφp·∇SBφq+δpq|B|
]

,

or equivalently

k + 1
k − 1

mpq − δpq|B| = k

∫

B

(∇SBφp + ep) · (∇SBφq + eq)

+
∫

IRd\B

∇SBφp · ∇SBφq .
(3.16)

From the Schwarz’ inequality
(∫

B

(∇SBφp + ep) · (∇SBφq + eq)
)2

≤
∫

B

|∇SBφp + ep|2
∫

B

|∇SBφq + eq|2 ,

and similarly for the second integral in (3.16). By squaring both sides of (3.16)
and then applying the inequality to the new right-hand side, we obtain the
following inequality
(
k + 1
k − 1

mpq − δpq|B|
)2

≤
(
k + 1
k − 1

mpp − |B|
)(

k + 1
k − 1

mqq − |B|
)

. (3.17)

We can also develop upper and lower bounds on the diagonal elements
(mpp)p=1,...,d. We have

mpp =
k − 1
k + 1

[

k

∫

B

|∇SBφp + ep|2 +
∫

IRd\B

|∇SBφp|2 + |B|
]

,

where φp = (λI −K∗
B)−1(νp). ∀ τ ∈ IR, we compute

∫

B

|τ∇(SBφp + yp) + ep|2

= τ2

∫

B

|∇SBφp + ep|2 + 2τ
∫

B

∇(SBφp + yp) · ep + |B|

= τ2

∫

B

|∇SBφp + ep|2 + 2τ
∫

∂B

(
∂

∂ν
SBφp

∣
∣
∣
∣
−

+ νp

)

yp + |B| .

Since
∂

∂ν
SBφp

∣
∣
∣
∣
−

= (−1
2
I + K∗

B)φp = (λ− 1
2
)φp − νp
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then
∫

B

|∇SBφp + ep|2 =
1
τ2

∫

B

|τ∇(SBφp + yp) + ep|2 −
2
τ
(λ − 1

2
)mpp − 1

τ2
|B| ,

and hence

mpp

k − 1

(

1 + 2k
τ(k+1)

)

= |B|(1 − k

τ
)

1
k + 1

+
1

k + 1

[
k

τ2

∫

B

|τ∇(SBφp + yp) + ep|2 +
∫

IRd\B

|∇SBφp|2
]

.

Taking τ = −1 in the above identity we arrive at

mpp

k − 1
= |B| + 1

1 − k

[

k

∫

B

| − ∇(SBφp + yp) + ep|2 +
∫

IRd\B

|∇SBφp|2
]

,

and therefore
mpp

k − 1
≥ |B| if k < 1 ,

and
mpp

k − 1
≤ |B| if k > 1 .

Taking τ = −k yields
mpp

k − 1
≤ 1
k
|B| if k < 1 ,

and
mpp

k − 1
≥ 1
k
|B| if k > 1 .

The following optimal upper and lower bounds for the diagonal elements of
the Polarization Tensor of Pólya–Szegö hold.

Lemma 3.7 If M = (mpq)d
p,q=1 is the polarization tensor of Pólya–Szegö

associated with the bounded Lipschitz domain B and the conductivity 0 < k �=
1 < +∞ then

min(1,
1
k
)|B| ≤ mpp

k − 1
≤ max(1,

1
k

)|B|, p = 1, . . . , d . (3.18)

These bounds are optimal in the sense that they are achieved by the diagonal
elements of thin ellipses (for d = 2) and thin spheroids (for d = 3).

Note that the bounds d|B|min(1, 1/k) and d|B|max(1, 1/k) on the trace
Tr(M) of the matrix M which follow directly from (3.18) are not optimal.
Indeed, the optimal bounds are given by the following lemma [71, 72].

Lemma 3.8 If M is the polarization tensor of Pólya–Szegö associated with
the bounded Lipschitz domain B and the conductivity 0 < k �= 1 < +∞ then

d2

d− 1 + k
|B| ≤ Tr(M)

k − 1
≤ (d− 1 +

1
k

)|B| .
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The domain of possible values of the polarization tensor of Pólya–Szegö
for a domain of a given volume and a given conductivity can be found in
[186, 72]. As shown by Capdeboscq and Vogelius in [72], any point in this
domain is achieved by coated ellipses. As has been pointed out by Kozlov
in [185, 186], the derivation of optimal bounds for the polarization tensor of
Pólya–Szegö and the estimates of its possible values are direct analogues of
the corresponding estimates for the effective conductivity matrix known in
the theory of composite materials [139, 199, 215, 205].

The proof of Lemma 3.8 relies on a variational principle associated with
the representation (3.16) of the elements of the matrix M . This variational
principle can be formulated as follows [22]:

1
k − 1

d∑

p,q=1

mpqξpξq = (k − 1) min
w∈Wd

∫

IRd

(

1 + (k − 1)χ(B)
)∣
∣
∣
∣∇w +

1
k
χ(B)ξ

∣
∣
∣
∣

2

+
|B|
k

|ξ|2, ∀ ξ = (ξp)d
p=1 ∈ IRd, d = 2, 3 .

(3.19)
Here

W3 :=
{

w ∈W 1,2
loc (IR3) :

w

r
∈ L2(IR3),∇w ∈ L2(IR3)

}

and

W2 :=
{

w ∈W 1,2
loc (IR2) :

w√
1 + r2 log(2 + r2)

∈ L2(IR2),∇w ∈ L2(IR2)
}

.

Another interesting result that can be obtained by using the variational
principle (3.19) is the following: (1/(k − 1))M is a monotonically increasing
positive definite matrix if we replace the given domain B by another B′ which
contains B.

Finally we would like to mention the following important unproven con-
jecture of Pólya–Szegö that is related to Lemma 3.8: if

Tr(M) = (k − 1)|B| d2

(d− 1 + k)

then B is a disk in the plane and a ball in three-dimensional space.

3.5 Estimates of the Weighted Volume and the Center of
Mass

If f(x) =
∑
aix

i is a harmonic polynomial, then QB(f) =
∫

B
|∇(
∑
aix

i)|2 dx,
where QB is defined by (3.14). In particular, if f(x) = xp, p = 1, . . . , d, then
QB(f) = |B|. One can observe from (3.15) that if

∑
i∈I aix

i is a harmonic
polynomial, then
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∣
∣
∣
∣

∑

i,j∈I

aiajMij

∣
∣
∣
∣ ≥

|k − 1|
k + 1

∫

B

∣
∣
∣
∣∇
(∑

aix
i
) ∣∣
∣
∣

2

dx .

We now derive an upper bound for
∑

i,j∈I aiajMij in terms of the weighted
volume.

Theorem 3.9 There exists a constant C depending only on the Lipschitz
character of B such that if f(x) =

∑
i∈I aix

i is a harmonic polynomial, then

∫

B

|∇f |2 dx ≤ k + 1
|k − 1|

∣
∣
∣
∣

∑

i,j∈I

aiajMij

∣
∣
∣
∣ ≤ C

∫

B

|∇f |2 dx . (3.20)

Proof. By the definition of GPT’s, we have

∑

i,j∈I

aiajMij =
∫

∂B

f(y)(λI −K∗
B)−1

(
∂f

∂ν

∣
∣
∣
∣
∂B

)

(y)dσ(y) .

Since
∫

∂B
(λI −K∗

B)−1(∂f
∂ν |∂B) dσ = 0, we get

∑

i,j∈I

aiajMij =
∫

∂B

(f(y) − f0)(λI −K∗
B)−1

(
∂f

∂ν

∣
∣
∣
∣
∂B

)

(y)dσ(y) ,

where f0 := 1
|∂B|

∫
∂B f dσ. It thus follows from Lemma 2.10 that

∣
∣
∣
∣

∑

i,j∈I

aiajMij

∣
∣
∣
∣ ≤ C

|k − 1|
k + 1

‖f − f0‖L2(∂B)

∥
∥
∥
∥
∂f

∂ν

∥
∥
∥
∥

L2(∂B)

.

By the Poincaré inequality,

‖f − f0‖L2(∂B) ≤ C‖∇f‖L2(∂B) .

Thus the proof is complete by Lemma 2.1. ��
We now investigate the relation of GPT’s with the centroid of B. Suppose

that B is a two dimensional disk with radius r, then, (2.16) yields

K∗
Bφ(x) = KBφ(x) =

1
4πr

∫

∂B

φ(y) dσ(y) ,

which gives that K∗
B(φ) = 0 for all φ ∈ L2

0(∂B). Thus, if f(y) =
∑

i aiy
i is

harmonic, then

∑

i

ai(λI −K∗
B)−1(νy · ∇yi)(x) =

1
λ
νx · ∇f .

Therefore, we have
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∑

i

aiMij =
1
λ

∫

∂B

yjνy · ∇f dσ(y) =
1
λ

∫

B

∇yj · ∇f dy .

Thus, if i = j = ep, p = 1, . . . , d, then Mij = λ−1|B|, and if i = ep and
j = 2ep, then Mij = 2λ−1|B|x∗p, where x∗ is the center of the ball. Here
{ep}d

p=1 is an orthonormal basis of IRd.
Suppose now that d = 3 and B = Br(x∗) is a ball of center x∗ and radius

r. Then, by (2.17), K∗
Bφ(x) = − 1

2rSBφ(x) for all x ∈ ∂B.
Let f be a harmonic polynomial homogeneous of degree n with respect to

the center x∗. Let

ϕ(x) = SB(
∂f

∂ν
|∂B)(x), x ∈ IRd \B .

By (3.8) we have

ϕ(x) =
∞∑

p=1

∫

∂B

∑

|j|=p

1
j!
∂jΓ (x− x∗)(y − x∗)j ∂f

∂ν
(y) dσ(y)

=
∫

∂B

∑

|j|=n

1
j!
∂jΓ (x− x∗)(y − x∗)j ∂f

∂ν
(y) dσ(y) .

In particular, ϕ(x), x ∈ IR3 \B, is homogeneous of degree −n−1 with respect
to x∗.

By (2.12), we get

∂ϕ

∂ν

∣
∣
∣
∣
+

(x) =
(

1
2
I + K∗

B

)(
∂f

∂ν

∣
∣
∣
∣
∂B

)

(x)

=
1
2
∂f

∂ν
(x) − 1

2r
SB

(
∂f

∂ν

∣
∣
∣
∣
∂B

)

(x), x ∈ ∂B .

Therefore,
x− x∗

r
· ∇ϕ+

1
2r
ϕ =

1
2
∂f

∂ν
(x) on ∂B .

It then follows from the homogeneity of ϕ and f that (x−x∗)·∇ϕ = −(n+1)ϕ,
and hence

ϕ = − r

2n+ 1
∂f

∂ν
on ∂B .

So far we proved that if f is a harmonic polynomial homogeneous of degree
n with respect to x∗, then

K∗
B

(
∂f

∂ν

∣
∣
∣
∣
∂B

)

(x) = − 1
2r

SB

(
∂f

∂ν

∣
∣
∣
∣
∂B

)

(x) =
1

2(2n+ 1)
∂f

∂ν
(x), x ∈ ∂B .

It then follows that
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(λI −K∗
B)−1

(
∂f

∂ν

∣
∣
∣
∣
∂B

)

=
(k − 1)(2n+ 1)
kn+ n+ 1

∂f

∂ν
on ∂B . (3.21)

In particular, if f(x) = xp, p = 1, 2, 3, then

∂f

∂ν
=

∂

∂ν
(xp − x∗p) .

Thus by (3.21) we get

(λI −K∗
B)−1

(
∂f

∂ν

∣
∣
∣
∣
∂B

)

=
3(k − 1)
k + 2

∂f

∂ν
on ∂B .

Therefore, if |i| = 1, then

Mij =
3(k − 1)
k + 2

∫

B

∇yj · ∇yi dy. (3.22)

Observe that if j = 2ep and i = ep, p = 1, . . . , d, then
∫

B

∇yj · ∇yi dy = 2
∫

B

yj dy = 2x∗p|B| .

So far we have proved the following theorem.

Theorem 3.10 Suppose that B = Br(x∗) is a ball in IRd, d = 2, 3. Let il := el

and jl := 2el, l = 1, . . . , d. Then

Milil
=

d(k − 1)
k + d− 1

|B|, l = 1, . . . , d ,

and

(Mi1j1 , . . . ,Midjd
) =

2d(k − 1)
k + d− 1

|B|x∗ .

For a general bounded Lipschitz domain B, we have the following theorem.

Theorem 3.11 Let B be a bounded Lipschitz domain and x∗ the center of
mass of B. Let il := el and jl := 2el, l = 1, . . . , d. Then there exists C which
depends only on the Lipschitz character of B such that

∣
∣
∣
∣
Miljl

Milil

− 2x∗l

∣
∣
∣
∣ ≤ C

|k − 1|
k + 1

diam(B) . (3.23)

Proof. Since

(λI −K∗
B)−1(νl) = λ−1νl + λ−1(λI −K∗

B)−1K∗
B(νl) ,

it follows from (2.29) that
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‖(λI −K∗
B)−1(νl) − λ−1νl‖L2(∂B) ≤ C|λ|−1‖(λI −K∗

B)−1K∗
B(νl)‖L2(∂B)

≤ C|λ|−2‖K∗
B(νl)‖L2(∂B) ≤ C|λ|−2|∂B|1/2 .

Note that

Miljl
− 2x∗lMilil

=
∫

∂B

(yl − x∗l )
2(λI −K∗

B)−1(νl)(y) dσ(y) .

We also note that ∫

∂B

(yl − x∗l )
2νl(y)dσ(y) = 0 .

It then follows from the Cauchy–Schwarz inequality that

|Miljl
− 2x∗lMilil

| =
∣
∣
∣
∣

∫

∂B

(yl − x∗l )
2

[

(λI −K∗
B)−1(νl)(y) − νl(y)

]

dσ(y)
∣
∣
∣
∣

≤ Cdiam(B)2|∂B||λ|−2 .

Then (3.23) follows from (3.20). This completes the proof. ��
Theorem 3.11 says that if either k is close to 1 or the diameter of B is

small, then (Miljl
/Milil

)l=1,...,d, where jl = 2el, is a good approximation of
the centroid of B.

We note that even when the conductivity of the inclusion and the back-
ground is anisotropic, the polarization tensor shares the same properties, sym-
metry and positivity. For this, see [167].

3.6 Polarization Tensors of Multiple Inclusions

Our goal in this section is to investigate properties of polarization tensors
associated with multiple inclusions such as symmetry and positivity, which,
in a most natural way, generalize those already derived for a single inclusion
in the above sections. We also estimate their eigenvalues in terms of the total
volume of the inclusions and explicitly compute them in the multi-disk case.
These results are from [21].

Let Bs for s = 1, . . . ,m be a bounded Lipschitz domain in IRd. Throughout
this section we suppose that:

(H1) there exist positive constants C1 and C2 such that

C1 ≤ diamBs ≤ C2, and C1 ≤ dist(Bs, Bs′) ≤ C2, s �= s′ ;

(H2) the conductivity of the inclusion Bs for s = 1, . . . ,m is equal to some
positive constant ks �= 1.
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3.6.1 Definition

Theorem 3.12 Let H be a harmonic function in IRd for d = 2 or 3. Let u
be the solution of the transmission problem:





∇ ·
(

χ(Ω \
m⋃

s=1

Bs) +
m∑

s=1

ksχ(Bs)
)

∇u = 0 in IRd ,

u(x) −H(x) = O(|x|1−d) as |x| → ∞ .

(3.24)

There are unique functions ϕ(l) ∈ L2
0(∂Bl), l = 1, . . . ,m, such that

u(x) = H(x) +
m∑

l=1

SBl
ϕ(l)(x) . (3.25)

The potentials ϕ(l), l = 1, . . . ,m, satisfy

(λlI −K∗
Bl

)ϕ(l) −
∑

s�=l

∂(SBsϕ
(s))

∂ν(l)

∣
∣
∂Bl

=
∂H

∂ν(l)

∣
∣
∂Bl

on ∂Bl , (3.26)

where ν(l) denotes the outward unit normal to ∂Bl and

λl =
kl + 1

2(kl − 1)
.

Proof. It is easy to see from (2.12) that u defined by (3.25) and (3.26) is the
solution of (3.24). Thus it is enough to show that the integral equation (3.26)
has a unique solution.

LetX := L2
0(∂B1)×· · ·×L2

0(∂Bm). We prove that the operator T : X → X
defined by

T (ϕ(1), · · · , ϕ(m)) = T0(ϕ(1), · · · , ϕ(m)) + T1(ϕ(1), · · · , ϕ(m))

:=
(
(λ1I −K∗

B1
)ϕ(1), · · · , (λmI −K∗

Bm
)ϕ(m)

)

−




∑

s�=1

∂(SBsϕ
(s))

∂ν(1)

∣
∣
∂B1

, · · · ,
∑

s�=m

∂(SBsϕ
(s))

∂ν(m)

∣
∣
∂Bm





is invertible. By Theorem 2.8, T0 is invertible on X . On the other hand, it
is easy to see that T1 is a compact operator on X . Thus, by the Fredholm
alternative, it suffices to show that T is injective on X . If T (ϕ(1), · · · , ϕ(m)) =
0, then u(x) :=

∑m
l=1 SBl

ϕ(l)(x), x ∈ IRd is the solution of (3.24) with H = 0.
By the uniqueness of the solution to (3.24), we get u ≡ 0. In particular, SBl

ϕ(l)

is smooth across ∂Bl, l = 1, . . . ,m. Therefore,

ϕ(l) =
∂(SBl

ϕ(l))
∂ν(l)

∣
∣
+
− ∂(SBl

ϕ(l))
∂ν(l)

∣
∣
− = 0 .

This completes the proof. ��
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Definition 3.13 Let i = (i1, . . . , id), j = (j1, . . . , jd) ∈ INd be multi-indices.
For l = 1, . . . ,m, let ϕ(l)

i be the solution of

(λlI −K∗
Bl

)ϕ(l)
i −

∑

s�=l

∂(SBsϕ
(s)
i )

∂ν(l)

∣
∣
∂Bl

=
∂xi

∂ν(l)

∣
∣
∂Bl

on ∂Bl . (3.27)

Then the polarization tensor Mij is defined to be

Mij =
m∑

l=1

∫

∂Bl

xjϕ
(l)
i (x) dσ(x) . (3.28)

If |i| = |j| = 1, we denote Mij by (mpq)d
p,q=1. We call M = (mpq)d

p,q=1 the
first-order polarization tensor.

3.6.2 Properties

Theorem 3.14 Suppose that ai and bj are constants such that
∑

i aiy
i and∑

j bjy
j are harmonic polynomials. Then

∑

i,j

aibjMij =
∑

i,j

aibjMji . (3.29)

Proof. Reasoning as in the proof of Theorem 3.5 we put f(y) :=
∑

i aiy
i,

g(y) :=
∑

j bjy
j, ϕ(l) :=

∑
i aiϕ

(l)
i , and ψ(l) :=

∑
j bjϕ

(l)
j to easily see that

∑

i,j

aibjMij =
m∑

l=1

∫

∂Bl

gϕ(l) dσ and
∑

i,j

aibjMji =
m∑

l=1

∫

∂Bl

fψ(l) dσ .

We also put

Φ(x) :=
m∑

l=1

SBl
ϕ(l) and Ψ(x) :=

m∑

l=1

SBl
ψ(l) .

From the definition of ϕ(l)
i , one can readily get

kl
∂(f + Φ)
∂ν(l)

∣
∣
∣
∣
−

=
∂(f + Φ)
∂ν(l)

∣
∣
∣
∣
+

on ∂Bl , (3.30)

and the same relation for g + Ψ holds. From (3.27) we obtain

∂(SBl
ϕ(l))

∂ν(l)

∣
∣
∣
∣
+

− kl
∂(SBl

ϕ(l))
∂ν(l)

∣
∣
∣
∣
−

=
∑

i

ai

[
∂(SBl

ϕ
(l)
i )

∂ν(l)

∣
∣
∣
∣
+

− kl
∂(SBl

ϕ
(l)
i )

∂ν(l)

∣
∣
∣
∣
−

]

= (kl − 1)
∑

i

ai
∂

∂ν(l)



xi +
∑

s�=l

SBsϕ
(s)
i





= (kl − 1)
∂

∂ν(l)



f +
∑

s�=l

SBsϕ
(s)
i



 .
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Thus, it follows from (3.30) that

ϕ(l) =
∂(SBl

ϕ(l))
∂ν(l)

∣
∣
∣
∣
+

− ∂(SBl
ϕ(l))

∂ν(l)

∣
∣
∣
∣
−

= (kl − 1)
∂(f + Φ)
∂ν(l)

∣
∣
∣
∣
−

on ∂Bl . (3.31)

Therefore, we get

∑

i,j

aibjMij =
m∑

l=1

(kl − 1)
∫

∂Bl

g
∂(f + Φ)

∂ν

∣
∣
∣
∣
−
dσ

=
m∑

l=1

(kl − 1)
∫

∂Bl

(g + Ψ)
∂(f + Φ)

∂ν

∣
∣
∣
∣
−
dσ

−
m∑

l=1

(kl − 1)
∫

∂Bl

Ψ
∂(f + Φ)

∂ν

∣
∣
∣
∣
−
dσ

=
m∑

l=1

(kl − 1)
∫

∂Bl

(g + Ψ)
∂(f + Φ)

∂ν

∣
∣
∣
∣
−
dσ

−
m∑

l=1

∫

∂Bl

Ψ

[
∂(SBl

ϕ(l))
∂ν

∣
∣
∣
∣
+

− ∂(SBl
ϕ(l))

∂ν

∣
∣
∣
∣
−

]

dσ .

Observe now that
m∑

l=1

∫

∂Bl

Ψ
∂(SBl

ϕ(l))
∂ν

∣
∣
∣
∣
+

dσ =
∑

s,l

∫

∂Bl

SBsψ
(s) ∂(SBl

ϕ(l))
∂ν

∣
∣
∣
∣
+

dσ

= −
m∑

l=1

∫

IRd\Bl

∇SBl
ψ(l) · ∇SBl

ϕ(l) dx

− 1
2

∑

l �=s

∫

IRd\Bl∪Bs

∇SBsψ
(s) · ∇SBl

ϕ(l) dx ,

and on the other hand
m∑

l=1

∫

∂Bl

Ψ
∂(SBl

ϕ(l))
∂ν

∣
∣
∣
∣
−
dσ =

∑

s,l

∫

Bl

∇SBsψ
(s) · ∇SBl

ϕ(l) dx

=
m∑

l=1

∫

Bl

∇SBl
ψ(l) · ∇SBl

ϕ(l) dx+
1
2

∑

s�=l

∫

Bl∪Bs

∇SBsψ
(s) · ∇SBl

ϕ(l) dx ,

to finally arrive at

∑

i,j

aibjMij =
m∑

l=1

(kl − 1)〈(g + Ψ), (f + Φ)〉Bl

+
∑m

l=1〈SBl
ψ(l),SBl

ϕ(l)〉IRd +
1
2

∑

s�=l

〈SBsψ
(s),SBl

ϕ(l)〉IRd .

(3.32)
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Here, the notation 〈u, v〉D :=
∫

D ∇u · ∇v dx has been used. The symmetry
(3.29) follows immediately from (3.32) and the proof is complete. ��

Theorem 3.15 Suppose that either kl − 1 > 0 or kl − 1 < 0 for all l =
1, . . . ,m. Let

κ := max
1≤l≤m

∣
∣
∣
∣1 − 1

kl

∣
∣
∣
∣ .

For any ai such that
∑

i aiy
i is harmonic,

∣
∣
∣
∣
∣
∣

∑

i,j

aiajMij

∣
∣
∣
∣
∣
∣
≥ |κ− 1|
m+ 1

m∑

l=1

|kl − 1|
∫

Bl

∣
∣
∣
∣
∣
∇(
∑

i

aiy
i)

∣
∣
∣
∣
∣

2

dy . (3.33)

In particular, if kl − 1 > 0 (resp. < 0) for all l = 1, . . . ,m, then M =
(mpq)d

p,q=1 is positive (resp. negative) definite and if
∑d

p=1 a
2
p = 1, then

∣
∣
∣
∣
∣

d∑

p,q=1

apaqmpq

∣
∣
∣
∣
∣
≥ |κ− 1|
m+ 1

m∑

l=1

|kl − 1| |Bl| .

Proof. Suppose that either kl − 1 > 0 or kl − 1 < 0 for all l = 1, . . . ,m.
Recall that the quadratic form QD(u) is defined by QD(u) := 〈u, u〉D. It then
follows from (3.32) that

∑

i,j

aiajMij =
m∑

l=1

(kl − 1)QBl
(f + Φ) +

m∑

l=1

QIRd(SBl
ϕ(l))

+
1
2

∑

s�=l

〈SBsϕ
(s),SBl

ϕ(l)〉IRd

=
m∑

l=1

(kl − 1)QBl
(f + Φ) +QIRd(Φ) .

(3.34)

On the other hand, because of (3.30), we get

(kl − 1)
∂f

∂ν(l)
=

∂Φ

∂ν(l)

∣
∣
∣
∣
+

− kl
∂Φ

∂ν(l)

∣
∣
∣
∣
−

on ∂Bl, l = 1, . . . , d .
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Thus, it follows from (3.31) that
∑

i,j

aiajMij (3.35)

=
m∑

l=1

(kl − 1)
∫

∂Bl

f
∂(f + Φ)

∂ν

∣
∣
∣
∣
−
dσ

=
m∑

l=1

(kl − 1)QBl
(f) +

m∑

l=1

(kl − 1)
∫

∂Bl

∂f

∂ν
Φdσ

=
m∑

l=1

(kl − 1)QBl
(f) +

m∑

l=1

∫

∂Bl

∂Φ

∂ν

∣
∣
∣
∣
+

Φdσ −
m∑

l=1

kl

∫

∂Bl

∂Φ

∂ν

∣
∣
∣
∣
−
Φdσ

=
m∑

l=1

(kl − 1)QBl
(f) −

m∑

l=1

QIRd(Φ) −
m∑

l=1

(kl − 1)QBl
(Φ) . (3.36)

By equating (3.34) and (3.36) we have

m∑

l=1

(kl − 1)QBl
(f + Φ) +QIRd(Φ)

=
m∑

l=1

(kl − 1)QBl
(f) −

m∑

l=1

QIRd(Φ) −
m∑

l=1

(kl − 1)QBl
(Φ) .

(3.37)

and consequently, one can claim that

m∑

l=1

(kl − 1)QBl
(f) ≥

m∑

l=1

klQBl
(Φ) , (3.38)

since the left-hand side of (3.37) is positive. It also follows from (3.37) that

QIRd(Φ) =
1

m+ 1

m∑

l=1

(kl − 1)
[

QBl
(f) −QBl

(f + Φ) −QBl
(Φ)
]

. (3.39)

Substituting (3.39) into (3.34), we obtain

∑

i,j

aiajMij =
m

m+ 1

m∑

l=1

(kl − 1)QBl
(f + Φ)

+
1

m+ 1

m∑

l=1

(kl − 1)
[

QBl
(f) −QBl

(Φ)
]

,

and hence

∑

i,j

aiajMij ≥ 1
m+ 1

m∑

l=1

(kl − 1)
[

QBl
(f) −QBl

(Φ)
]

. (3.40)
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But by (3.38) we get

m∑

l=1

(kl − 1)QBl
(Φ) =

m∑

l=1

(kl − 1)
kl

klQBl
(Φ)

≤ κ
m∑

l=1

klQBl
(Φ) ≤ κ

m∑

l=1

(kl − 1)QBl
(f) ,

and hence (3.33) follows immediately from (3.40). This completes the proof.
��

Based on the definition (3.28), polarizations tensors associated with multi-
ple disks and balls are explicitly computed in [21, 197]. It should also be noted
that Cheng and Greengard gave in Theorem 2.2 of their interesting paper [81]
a solution to the two- and three-disk conductivity problem based on a method
of images.

3.6.3 Representation by Equivalent Ellipses

Suppose d = 2, and let M = (mpq)2p,q=1 be the first-order polarization tensor
of the inclusions ∪m

s=1Bs. We define the overall conductivity k̄ of B = ∪m
s=1Bs

by
k̄ − 1
k̄ + 1

m∑

s=1

|Bs| :=
m∑

s=1

ks − 1
ks + 1

|Bs| , (3.41)

and its center z̄ by

k̄ − 1
k̄ + 1

z̄

m∑

s=1

|Bs| =
m∑

s=1

ks − 1
ks + 1

∫

Bs

xdx . (3.42)

Note that if ks is the same for all s then k̄ = ks and z̄ is the center of mass of
B.

In this section we represent and visualize the multiple inclusions ∪m
s=1Bs

by means of an ellipse, E , of center z̄ with the same polarization tensor. We
call E the equivalent ellipse of ∪m

s=1Bs.
At this point let us review a method to find an ellipse from a given first-

order polarization tensor. This method is due to Brühl, Hanke, and Vogelius
[64]. Let E ′ be an ellipse whose focal line is on either the x1− or the x2−axis.
We suppose that its semi-major axis is of length a and its semi-minor axis is

of length b. Let E = RE ′ where R =
(

cos θ − sin θ
sin θ cos θ

)

and θ ∈ [0, π]. Let M be

the polarization tensor of E . We want to recover a, b, and θ from M knowing
the conductivity k = k̄.

Recall that the polarization tensor M ′ for E ′ takes the form

M ′ = (k − 1)|E ′|
( a+b

a+kb 0
0 a+b

b+ka

)

,
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and that of E is given by M = RM ′RT . Suppose that the eigenvalues of M
are λ1 and λ2, and corresponding eigenvectors of unit length are (e11, e12)T

and (e21, e22)T . Then it can be shown that

a =
√

p

πq
, b =

√
pq

π
, θ = arctan

e21
e11

,

where
1
p

=
k − 1
k + 1

(
1
λ1

+
1
λ2

)

and q =
λ2 − kλ1

λ1 − kλ2
.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(k
1
,k

2
)=(1.5,1.5)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(k
1
,k

2
)=(1.5,3.0)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(k
1
,k

2
)=(1.5,15.0)

ai
0, a

i
1, a

i
2, b

i
0, b

i
1, b

i
2 ki k̄ a b θ z̄

1.5 1.5 0.313 0.256 0.322 ( -0.000, 0.400)
1.5

-0.3,0.2,0, 0.3,0.2,0 1.5 2.077 0.307 0.261 0.322 (0.129, 0.443)
0.3,0.2,0, 0.5,0.2,0 3

1.5 3.324 0.301 0.266 0.322 (0.188, 0.463)
15

Fig. 3.1. When the two disks have the same radius and the conductivity of the
one on the right-hand side is increasing, the equivalent ellipse moves toward the
right inclusion. In the table k̄ and z̄ are the overall conductivity and center defined
by (3.41) and (3.42) and a, b, θ are the semi-axes lengths and angle of orientation
measured in radians of the equivalent ellipse.

We now show some numerical examples of equivalent ellipses. We represent
the set of inclusions B = ∪m

s=1Bs by an equivalent ellipse of center z̄ and
conductivity k̄. We assume that the inclusion Bs takes the following form:

∂Bs =
{(

as
0 + as

1 cos(t) + as
2 cos(2t), bs0 + bs1 sin(t) + bs2 sin(2t)

)

, 0 ≤ t < 2π
}

.
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In order to evaluate the first-order polarization tensor of multiple inclusions,
we solve the integral equation (2.41) with H(x) = xp to find ϕ(s)

p for p = 1, 2
and s = 1, . . . ,m, and then calculate mpq =

∑m
s=1

∫
∂Bs

xqϕ
(s)
p (x) dσ(x).

Figures 3.1 and 3.2 show how the equivalent ellipse changes as the con-
ductivities and the sizes of the inclusions Bs vary. The solid line represents
the actual inclusions and the dashed lines are the effective ellipses.
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1.5 -1,0.2,0, 0,0.2,0 1.5 0.478 0.420 0 (-0.200, 0.000)
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Fig. 3.2. When the conductivities of the two disks are the same and the radius of
the disk on the right-hand side is increasing, the equivalent ellipse moves toward the
right inclusion.



4

Derivation of the Full Asymptotic Formula

In this chapter we derive full asymptotic expansions of the steady-state voltage
potentials in the presence of a finite number of diametrically small inclusions
with conductivities different from the background conductivity. The derivation
is rigorous and based on layer potential techniques and the decomposition
formula (2.39) of the steady-state voltage potential into a harmonic part and
a refraction part. The asymptotic expansions in this chapter are valid for
inclusions with Lipschitz boundaries and those with extreme conductivities
(zero or infinite conductivity).

The main result of this chapter is the following full asymptotic expansion
of the solution u of






∇ ·
(

χ

(

Ω \
m⋃

s=1

Ds

)

+
m∑

s=1

ksχ(Ds)
)

∇u = 0 in Ω ,

∂u

∂ν

∣
∣
∣
∣
∂Ω

= g ,

(4.1)

for the case m = 1. The leading-order term in this asymptotic formula which
expresses the fact that the conductivity inclusion can be modeled by a dipole
has been derived by Cedio-Fengya, Moskow, and Vogelius [73]; see also the
prior work of Friedman and Vogelius [123] for the case of perfectly conduct-
ing or insulating inclusions. A very general representation formula for the
boundary voltage perturbations caused by internal conductivity inclusions of
small volume fraction has been obtained by Capdeboscq and Vogelius in their
interesting paper [70].

Theorem 4.1 Suppose that the inclusion consists of a single component, D =
εB+ z, and let u be the solution of (4.1). The following pointwise asymptotic
expansion on ∂Ω holds for d = 2, 3:

H. Ammari and H. Kang: LNM 1846, pp. 65–78, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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u(x) = U(x) − εd−2
n∑

|i|=1

n−|i|+1∑

|j|=1

ε|i|+|j|

i!j!

×
[((

I +
n+2−|i|−|j|−d∑

p=1

εd+p−1Qp

)

(∂lU(z))
)

i

Mij∂
j
zN(x, z)

]

+O(εd+n) ,

(4.2)

where the remainder O(εd+n) is dominated by Cεd+n‖g‖L2(∂Ω) for some C
independent of x ∈ ∂Ω. Here N(x, z) is the Neumann function, that is, the
solution to (2.30), Mij, i, j ∈ INd, are the generalized polarization tensors
introduced in (3.1), and the matrix Qp is defined in (4.17).

In particular, if n = d then we simplify formula (4.2) to obtain:

u(x) = U(x) −
d∑

|i|=1

d−|i|+1∑

|j|=1

ε|i|+|j|+d−2

i!j!
∂iU(z)Mij∂

j
zN(x, z) + O(ε2d) . (4.3)

We have a similar expansion for the solutions of the Dirichlet problem
(Theorem 4.7).

In the expression (4.3), the remainder O(ε2d) is dominated by C′ε2d, where
the constant C′ can be precisely quantified in terms of the Lipschitz character
of B and dist(D, ∂Ω) (see [29, 13]).

The constant C′ blows up if dist(D, ∂Ω) → 0 or B has a ”bad” Lipschitz
character, i.e., the constant C in (2.28) goes to +∞ (or, in view of Lemma
2.9, δ(B) = minx∈∂B〈x, νx〉 → 0 if B is a star-shaped domain with respect to
the origin in two-dimensional space).

When B has a ”bad” Lipschitz character we must use, in place of (4.3), the
asymptotic formula corresponding to a small thin inclusion, which has been
formally derived by Beretta, Mukherjee, and Vogelius in [53] and rigorously
justified by Beretta, Francini, and Vogelius in their recent paper [52]; see also
[51].

In the case where the small inclusion is nearly touching the boundary
(dist(D, ∂Ω) → 0) a more complicated asymptotic formula established in
[13] should be used instead of (4.3). The dipole-type expansion (4.3) is valid
when the potential u within the inclusion D is nearly constant. On decreasing
dist(D, ∂Ω) this assumption begins to fail because higher-order multi-poles be-
come significant due to the interaction between D and ∂Ω. Our approximation
in [13] provides some essential insight for understanding this interaction.

The derivation of the asymptotic expansions for any fixed number m of
well-separated inclusions (these are a fixed distance apart) follows by iteration
of the arguments that we will present for the case m = 1. In other words, we
may develop asymptotic formulae involving the difference between the fields
u and U on ∂Ω with s inclusions and those with s−1 inclusions, s = m, . . . , 1,
and then at the end essentially form the sum of thesem formulae (the reference
fields change, but that may easily be remedied). The derivation of each of the
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m formulae is virtually identical. If D takes the form D = ∪m
s=1(εBs + zs).

The conductivity of the inclusion εBs +zs is ks, s = 1, . . . ,m. By iterating the
formula (4.3) we can derive the following expansion in the case when there
are several well separated inclusions:

u(x) = U(x) −
m∑

s=1

d∑

|i|=1

d−|i|+1∑

|j|=1

ε|i|+|j|+d−2

i!j!
∂iU(zs)Mij(ks, Bs)∂j

zN(x, zs)

+ O(ε2d) .
(4.4)

As stated in the above theorem, we restrict our derivation to the case
of a single inclusion (m = 1). We only give the details when considering
the difference between the fields corresponding to one and zero inclusions. In
order to further simplify notation we assume that the single inclusion D has
the form D = εB + z, where z ∈ Ω and B is a bounded Lipschitz domain
in IRd containing the origin. Suppose that the conductivity of D is a positive
constant k �= 1. Let λ := k + 1/(2(k − 1)) as before. Then by (2.39) and
(2.41), the solution u of (2.37) takes the form

u(x) = U(x) −ND(λI −K∗
D)−1

(
∂H

∂ν

∣
∣
∣
∣
∂D

)

(x) , x ∈ ∂Ω ,

where U is the background potential given in (2.38).

4.1 Energy Estimates

Let us begin with the following estimate of the trace of u−U on the boundary
∂Ω.

Proposition 4.2 If ∂Ω and ∂D are Lipschitz then there exists a positive
constant C independent of ε, k, and g such that, for ε small enough,

||u − U ||L2(∂Ω) ≤ C(k − 1) ||g||L2(∂Ω)ε
d if k > 1 ,

≤ C(
1
k
− 1) ||g||L2(∂Ω)ε

d if 0 < k < 1 .

Proof. We first observe that

DΩ(u− U)(x) = H(x) , x ∈ IRd \Ω , (4.5)

which follows immediately from the fact that DΩ(U)(x) − SΩ(g)(x) = 0 for
x ∈ IRd \Ω.

Recall that according to (2.28) there exists a positive constant C that
depends only on the Lipschitz character of Ω such that
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||f ||L2(∂Ω) ≤ C

∥
∥
∥
∥(−

1
2
I + KΩ)f

∥
∥
∥
∥

L2(∂Ω)

∀ f ∈ L2
0(∂Ω) . (4.6)

Employing this inequality, we write

||u− U ||2L2(∂Ω) ≤ C||(−1
2
I + KΩ)(u− U)||2L2(∂Ω) .

It then follows from the jump formula (2.13) that

||u− U ||2L2(∂Ω) ≤ C lim
t→0+

∫

∂Ω

∣
∣
∣
∣DΩ(u− U)(x+ tνx)

∣
∣
∣
∣

2

dσ(x) ,

which gives with the help of (2.46) and (4.5) that

||u− U ||2L2(∂Ω) ≤ C(k − 1)2
∫

∂Ω

∣
∣
∣
∣

∫

D

∇yΓ (x− y) · ∇u(y) dy
∣
∣
∣
∣

2

dσ(x) .

Thus we get by the Cauchy–Schwarz inequality

||u−U ||2L2(∂Ω) ≤ C(k− 1)2(
∫

D

|∇u(y)|2 dy)
∫

∂Ω

(
∫

D

|∇yΓ (x− y)|2 dy) dσ(x) .

(4.7)
If k > 1, then using the energy identity (2.58) we arrive at

||u− U ||L2(∂Ω) ≤ C(k − 1)||g||L2(∂Ω)

∫

∂Ω

(
∫

D

|∇yΓ (x− y)|2 dy) dσ(x) .

But there exists a positive constant C depending only on |B| and dist(D, ∂Ω)
such that ∫

∂Ω

(
∫

D

|∇yΓ (x− y)|2 dy) dσ(x) ≤ Cεd ,

for ε small enough. Inserting this into the above inequality immediately yields
the desired estimate for k > 1.

If 0 < k < 1, then by using (2.59) we have
∫

D

|∇u(y)|2 dy ≤ 2
∫

D

|∇(u− U)(y)|2 dy + 2
∫

D

|∇U(y)|2 dy

≤ 2
k

∫

Ω

(

1 + (k − 1)χ(D)
)

|∇(u − U)(y)|2 dy

+2
∫

D
|∇U(y)|2 dy

≤ 2
k(1 − k)

||u− U ||L2(∂Ω)||g||L2(∂Ω) .

Here we have used the energy identity (2.59). Combining (4.7) with the above
estimate, we deduce that for 0 < k < 1 the desired estimate holds and the
proof of the proposition is then complete. ��

As a direct consequence of Proposition 4.2 and its proof we get the follow-
ing corollary.
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Corollary 4.3 Let 0 < k �= 1 < +∞. There exists a constant C(k) indepen-
dent of ε such that

‖∇u‖L2(D) ≤ C(k) ε
d
2 .

Next we employ the Rellich identity stated in Lemma 2.6 to estimate the
L2-norm of the tangential derivative of u− U on the boundary ∂Ω as ε goes
to zero.

Lemma 4.4 Let Tx be the tangent vector to ∂Ω at x. If ∂Ω is Lipschitz then
there exists a positive constant C depending only on the Lipschitz character
of ∂Ω such that

∥
∥
∥
∥
∂

∂T
(u− U)

∥
∥
∥
∥

L2(∂Ω)

≤ C ||g||L2(∂Ω)ε
d
2 . (4.8)

Proof. Let

Ωε =
{

x ∈ Ω, dist(x, ∂Ω) >
(

C − max
x∈∂B

|x|
)

ε

}

and α be a smooth vector field such that the support of α lies in IRd \Ωε and
〈α, ν〉 > c1 > 0 on ∂Ω (here, c1 depends only on the Lipschitz character of
∂Ω). Using the Rellich identity (2.20) with this α we obtain

∫

∂Ω

〈α, ν〉
∣
∣
∣
∣
∂

∂T
(u−U)

∣
∣
∣
∣

2

=
∫

Ω

−2〈∇α∇(u−U),∇(u−U)〉+(∇·α)|∇(u−U)|2 ,

since ∂(u− U)/∂ν = 0 on ∂Ω. Hence

∫

∂Ω

〈α, ν〉
∣
∣
∣
∣
∂

∂T
(u− U)

∣
∣
∣
∣

2

≤ C

∫

Ω

|∇(u− U)|2. (4.9)

Combining the energy identity (2.58) together with Proposition 4.2 leads us
to the estimates

∫

Ω

|∇(u − U)|2 ≤
∫

∂Ω

(U − u)g

≤ ||U − u||L2(∂Ω) ||g||L2(∂Ω)

≤ Cεd||g||L2(∂Ω) .

Therefore (4.9) implies that the estimate (4.8) holds. ��

Proposition 4.5 If ∂Ω is of class C2 then there exists a positive constant C
that is independent of ε, k, and g such that

||u− U ||L∞(∂Ω) ≤ C |k − 1| ||g||L2(∂Ω)ε
d ,

for ε small enough.



70 4 Derivation of the Full Asymptotic Formula

Proof. Since ∂Ω is of class C2 then

||u− U ||L∞(∂Ω) ≤ C

∥
∥
∥
∥(−

1
2
I + KΩ)(u− U)

∥
∥
∥
∥

L∞(∂Ω)

,

where C depends only on the C2 character of Ω and therefore

||u− U ||L∞(∂Ω) ≤ C lim
t→0+

sup
x∈∂Ω

∣
∣
∣
∣DΩ(u − U)(x+ tνx)

∣
∣
∣
∣ .

Using (2.46), we readily get

||u− U ||L∞(∂Ω) ≤ C|k − 1| sup
x∈∂Ω

∣
∣
∣
∣

∫

D

∇yΓ (x− y) · ∇u(y) dy
∣
∣
∣
∣

≤ C|k − 1| sup
x∈∂Ω

(∫

D

|∇yΓ (x− y)|2 dy
) 1

2

||∇u||L2(D) .

Since
||∇u||L2(D) ≤ Cεd/2

by Corollary 4.3 and supx∈∂Ω(
∫

D
|∇yΓ (x − y)|2 dy)1/2 is bounded by Cεd/2,

we obtain the desired result. ��
Next, the following estimates hold.

Proposition 4.6 (i) If Ω is Lipschitz, then

||H − U ||L2(∂Ω) ≤ C||u− U ||L2(∂Ω) ≤ C|k − 1| ||g||L2(∂Ω)ε
d .

(ii) If Ω is of class C2, then

||H − U ||L∞(∂Ω) ≤ C||u− U ||L∞(∂Ω) ≤ C|k − 1| ||g||L2(∂Ω)ε
d .

(iii) If Ω is of class C2, then

||H − U ||L∞(Ω) ≤ C|k − 1| ||g||L2(∂Ω)ε
d .

(iv) If Ω is of class C2, then

||H − U ||W 1,2(Ω) ≤ C|k − 1| 12 ||g||L2(∂Ω)ε
3d
4 .

(v) If Ω and D ⊂⊂ Ω are Lipschitz, then

||∇H −∇U ||L∞(D) ≤ C||u− U ||L2(∂Ω) ≤ C|k − 1|||g||L2(∂Ω)ε
d ,

where C depends on dist(∂Ω,D).

Administrator
ferret
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Proof. (i) and (ii) follow from the fact that

H − U = (
1
2
I + KΩ)(u − U) on ∂Ω

together with

||KΩv||L2(∂Ω) ≤ C||v||L2(∂Ω) if Ω is Lipschitz,
||KΩv||L∞(∂Ω) ≤ C′||v||L∞(∂Ω) if Ω is of class C2 ,

where the constants C and C′ depend only on the Lipschitz and C2 characters
of Ω, respectively. (iii) is a direct application of the maximum principle to the
harmonic function H − U and (ii).

To prove (iv) we write

||∇(H − U)||2L2(Ω) =
∫

∂Ω

∂

∂ν
(H − U)(H − U)

≤ ||H − U ||L2(∂Ω)||
∂

∂ν
(H − U)||L2(∂Ω) .

Since, by using the fact from Theorem 2.11 that KΩ : W 2
1 (∂Ω) →W 2

1 (∂Ω) is
a bounded operator together with Lemma 4.4, we have

|| ∂
∂ν

(H−U)||L2(∂Ω) ≤ C||H−U ||W 2
1 (∂Ω) ≤ C||u−U ||W 2

1 (∂Ω) ≤ Cε
d
2 ||g||L2(∂Ω) .

Therefore we get

||∇(H − U)||2L2(Ω) ≤ C|k − 1|||g||2L2(∂Ω)ε
3d
2 .

Now, since ∇(H − U) = ∇DΩ(u − U), we obtain

||∇H −∇U ||L∞(D) ≤ sup
x∈D

∫

∂Ω

|∇xΓ (x− y)|2 dσ(y) ||u− U ||L2(∂Ω) ,

and consequently (v) holds, where the constant C depends on dist(∂Ω,D).
This finishes the proof of the proposition. ��

4.2 Asymptotic Expansion

Define

Hn(x) :=
n∑

|i|=0

1
i!

(∂iH)(z)(x− z)i.

Here we use the multi-index notation i = (i1, . . . , id) ∈ INd. Then we have
from (2.42) that
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∥
∥
∥
∥
∂H

∂ν
− ∂Hn

∂ν

∥
∥
∥
∥

L2(∂D)

≤ sup
x∈∂D

|∇H(x) −∇Hn(x)||∂D|1/2

≤ ‖H‖Cn+1(D)|x− z|n|∂D|1/2

≤ C‖g‖L2(∂Ω)ε
n|∂D|1/2 .

Note that

if
∫

∂D

h dσ = 0 , then
∫

∂D

(λI −K∗
D)−1h dσ = 0 . (4.10)

If
∫

∂D h dσ = 0, then we have for x ∈ ∂Ω that

∣
∣ND(λI −K∗

D)−1h(x)
∣
∣ =
∣
∣
∣
∣

∫

∂D

[

N(x, y) −N(x, z)
]

(λI −K∗
D)−1h(y) dσ(y)

∣
∣
∣
∣

≤ Cε |∂D|1/2 ‖h‖L2(∂D) .

It then follows that

sup
x∈∂D

∣
∣
∣
∣ND(λI −K∗

D)−1

(
∂H

∂ν
|∂D − ∂Hn

∂ν
|∂D

)

(x)
∣
∣
∣
∣

≤ Cε|∂D|1/2

∥
∥
∥
∥
∂H

∂ν
− ∂Hn

∂ν

∥
∥
∥
∥

L2(∂D)

≤ C‖g‖L2(∂Ω)ε
d+n .

Therefore, we have

u(x) = U(x)−ND(λI −K∗
D)−1

(
∂Hn

∂ν
|∂D

)

(x) +O(εd+n), x ∈ ∂Ω , (4.11)

where the O(εd+n) term is dominated by C‖g‖L2(∂Ω)ε
d+n for some C depend-

ing only on c0. Note that

(λI−K∗
D)−1

(
∂Hn

∂ν
|∂D

)

(x) =
n∑

|i|=1

(∂iH)(z)(λI−K∗
D)−1

(
1
i!
νx ·∇(x−z)i

)

(x) .

Since D = εB+z, one can prove by using the change of variables y = (x− z)/ε
and the expression of K∗

D defined by (2.14) that

(λI−K∗
D)−1

(
1
i!
νx·∇(x−z)i

)

(x) = ε|i|−1(λI−K∗
B)−1

(
1
i!
νy ·∇yi

)(
1
ε
(x−z)

)

.

Put

φi(x) := (λI −K∗
B)−1

(

νy · ∇yi

)

(x), x ∈ ∂B . (4.12)
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Then we get

ND(λI −K∗
D)−1

(
∂Hn

∂ν
|∂D

)

(x) (4.13)

=
n∑

|i|=1

1
i!

(∂iH)(z)ε|i|−1

∫

∂D

N(x, y)φi(ε−1(y − z)) dσ(y)

=
n∑

|i|=1

1
i!

(∂iH)(z)ε|i|+d−2

∫

∂B

N(x, εy + z)φi(y) dσ(y) .

We now have from (2.35) and (4.13)

ND(λI −K∗
D)−1

(
∂Hn

∂ν

∣
∣
∣
∣
∂D

)

(x)

=
n∑

|i|=1

1
i!

(∂iH)(z)ε|i|+d−2
+∞∑

|j|=0

1
j!
ε|j|∂j

zN(x, z)
∫

∂B

yjφi(y)dσ(y) .

Observe that since H is a harmonic function in Ω we may compute

∑

|i|=l

1
i!

(∂iH)(z)∆(yi) = ∆y




∑

|i|=l

1
i!

(∂iH)(z)yi



 = 0 ,

and therefore, by Green’s theorem, it follows that
∫

∂B

∑

|i|=l

1
i!

(∂iH)(z)∇(yi) · νy dσ(y) = 0 .

Thus, in view of (4.10) and (4.12), the following identity holds:
∑

|i|=l

1
i!

(∂iH)(z)
∫

∂B

φi(y)dσ(y) = 0 ∀ l ≥ 1 .

Recalling now from Lemma 2.16 the fact that

εd−2N(x, εy + z) = εd−2

n−|i|+1∑

|j|=0

1
j!
ε|j|∂j

zN(x, z)yj +O(εd+n−|i|)

for all i, 1 ≤ |i| ≤ n, and the definition of GPT’s, we obtain the following
pointwise asymptotic formula. For x ∈ ∂Ω,

u(x) = U(x) − εd−2
n∑

|i|=1

n−|i|+1∑

|j|=1

ε|i|+|j|

i!j!
(∂iH)(z)Mij∂

j
zN(x, z)

+ O(εd+n) .

(4.14)

Observing that the formula (4.14) still contains ∂iH factors, we see that the
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remaining task is to convert (4.14) to a formula given solely by U and its
derivatives.

As a simplest case, let us now take n = 1 to find the leading-order term in
the asymptotic expansion of u|∂Ω as ε → 0. According to (v) in Proposition
4.6 we have

|∇H(z) −∇U(z)| ≤ Cεd‖g‖L2(∂Ω) ,

and therefore, we deduce from (4.14) that

u(x) = U(x) − εd
∑

|i|=1,|j|=1

(∂iU)(z)Mij∂
jN(x, z) +O(εd+1) , x ∈ ∂Ω ,

which is, in view of (3.7), exactly the formula derived in [123] and [73] when
D has a C1,α-boundary for some α > 0.

We now return to (4.14). Recalling that by Green’s theorem U = −SΩ(g)+
DΩ(U |∂Ω) in Ω, substitution of (4.14) into (2.40) immediately yields that, for
any x ∈ Ω,

H(x) = U(x)

−εd−2
n∑

|i|=1

n−|i|+1∑

|j|=1

ε|i|+|j|

i!j!
(∂iH)(z)MijDΩ(∂j

zN(·, z))(x) +O(εd+n) .
(4.15)

In (4.15) the remainder O(εd+n) is uniform in the Cn-norm on any compact
subset of Ω for any n, and therefore

(∂lH)(z) +
n∑

|i|=1

εd−2

n−|i|+1∑

|j|=1

ε|i|+|j|(∂iH)(z)Pijl = (∂lU)(z) +O(εd+n) (4.16)

for all l ∈ INd with |l| ≤ n, where

Pijl =
1
i!j!

Mij∂
l
xDΩ(∂j

zN(·, z))
∣
∣
∣
∣
x=z

.

Define the operator

Pε : (vl)l∈INd,|l|≤n 	→
(

vl + εd−2
n∑

|i|=1

n−|i|+1∑

|j|=1

ε|i|+|j|viPijl

)

l∈INd,|l|≤n

.

Observe that
Pε = I + εdR1 + · · · + εn+d−1Rn−1 .

Defining the matrices Qp, p = 1, . . . , n− 1, by

(I + εdR1 + · · · + εn+d−1Rn−1)−1 = I + εdQ1 + · · · + εn+d−1Qn−1

+ O(εn+d)
(4.17)
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for small ε, we finally obtain that

((∂iH)(z))i∈INd,|i|≤n =
(

I +
n∑

p=1

εd+p−1Qp

)

((∂iU)(z))i∈INd,|i|≤n +O(εd+n) ,

(4.18)
which yields the main result of this chapter stated in Theorem 4.1.

We also have a complete asymptotic expansion of the solutions of the
Dirichlet problem.

Theorem 4.7 Suppose that the inclusion consists of a single component, and
let v be the solution of (4.1) with the Neumann condition replaced by the
Dirichlet condition v|∂Ω = f . Let V be the solution of ∆V = 0 in Ω with
V |∂Ω = f . The following pointwise asymptotic expansion on ∂Ω holds for
d = 2, 3:

∂v

∂ν
(x) =

∂V

∂ν
(x) − εd−2

n∑

|i|=1

n−|i|+1∑

|j|=1

ε|i|+|j|

i!j!

×
[((

I +
n+2−|i|−|j|−d∑

p=1

εd+p−1Qp

)

(∂lV (z))
)

i

Mij∂
j
z

∂

∂νx
G(x, z)

]

+O(εd+n) ,
(4.19)

where the remainder O(εd+n) is dominated by Cεd+n‖f‖W 2
1
2
(∂Ω) for some C

independent of x ∈ ∂Ω. Here G(x, z) is the Dirichlet Green’s function, Mij,
i, j ∈ INd, are the GPT’s, and Qp is the operator defined in (4.17), where Pijk

is defined, in this case, by

Pijl =
1
i!j!

Mij∂
l
xSΩ

(

∂j
z

(
∂

∂νx
G

)

(·, z)
)∣
∣
∣
∣
x=z

.

Theorem 4.7 can be proved in the exactly same manner as Theorem 4.1.
We begin with Theorem 2.20. Then the same arguments give us

v(x) = V (x) − εd−2
n∑

|i|=1

n−|i|+1∑

|j|=1

ε|i|+|j|

i!j!
(∂iH)(z)Mij∂

j
zG(x, z) +O(εd+n) .

From this we can get (4.19) as before.
We conclude this section by making a remark. The following formulae

(4.20) and (4.21) are not exactly asymptotic formulae since the function H
still depends on ε. However, since the formula is simple and useful for solving
the inverse problem in later sections, we make a record of them as a theorem.
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Theorem 4.8 We have

u(x) = H(x) + εd−2
n∑

|i|=1

n−|i|+1∑

|j|=1

ε|i|+|j|

i!j!
∂iH(z)Mij∂

jΓ (x− z)

+O(εd+n) ,

(4.20)

where x ∈ ∂Ω and the O(εd+n) term is dominated by C‖g‖L2(∂Ω)ε
d+n for

some C depending only on c0, and H is given in (2.40).
Moreover,

H(x) = −
n∑

|i|=1

n−|i|+1∑

|j|=1

1
i!j!

ε|i|+|j|+d−2∂iH(z)Mij∂
jΓ (x−z)+O(εd+n) , (4.21)

for all x ∈ IRd \Ω .

Proof. Beginning with the representation formula (2.39), one can show in
the same way as in the derivation of (4.11) that

u(x) = H(x) + SD(λI −K∗
D)−1

(
∂Hn

∂ν
|∂D

)

(x) +O(εd+n) , x ∈ ∂Ω ,

for x ∈ ∂Ω. Then the rest is parallel to the previous arguments.
The formula (4.21) can be derived using (2.43). ��

4.3 Derivation of the Asymptotic Formula for Closely
Spaced Small Inclusions

An asymptotic formula similar to (4.2) was obtained for closely spaced in-
clusions in [21]. In this section we present the formula and its derivation in
brief.

Let D denote a set of m closely spaced inclusions inside Ω:

D = ∪m
s=1Ds := ∪m

s=1(εBs + z) ,

where z ∈ Ω, ε > 0 is small and Bs for s = 1, . . . ,m is a bounded Lipschitz
domain in IRd. We suppose in addition to (H1) and (H2) in Sect. 3.6 that the
set D is well-separated from the boundary ∂Ω, i.e., dist(D, ∂Ω) > c0 > 0.

Let g ∈ L2
0(∂Ω). The voltage potential in the presence of the set D of

conductivity inclusions is denoted by u. It is the solution to





∇·
(
χ(Ω \

m⋃

s=1

Ds) +
m∑

s=1

ksχ(Ds)
)
∇u = 0 in Ω ,

∂u

∂ν

∣
∣
∣
∣
∂Ω

= g ,

∫

∂Ω

u = 0 .

(4.22)

The background voltage potential is denoted by U as before.
Based on the arguments given in Theorem 2.17, the following theorem was

proved in [190].
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Theorem 4.9 The solution u of the problem (4.22) can be represented as

u(x) = H(x) +
m∑

s=1

SDsψ
(s)(x) , x ∈ Ω , (4.23)

where the harmonic function H is given by

H(x) = −SΩ(g)(x) + DΩ(f)(x), x ∈ Ω, f := u|∂Ω ,

and ψ(s) ∈ L2
0(∂Ds), s = 1, · · · ,m, satisfies the integral equation

(λsI −K∗
Ds

)ψ(s) −
∑

l �=s

∂(SDl
ψ(l))

∂ν(s)

∣
∣
∂Ds

=
∂H

∂ν(s)

∣
∣
∂Ds

on ∂Ds .

Moreover, ∀ n ∈ IN, there exists a constant Cn = C(n,Ω, dist(D, ∂Ω)) inde-
pendent of |D| and the conductivities ks, s = 1, . . . ,m, such that

‖H‖Cn(D) ≤ Cn‖g‖L2(∂Ω) .

One can also prove the following theorem.

Theorem 4.10 The solution u of (4.22) can be represented as

u(x) = U(x) −
m∑

s=1

NDsψ
(s)(x) , x ∈ ∂Ω ,

where ψ(s), s = 1, . . . ,m, is defined by (2.41).

Following the arguments presented in Sect. 4.2, we only outline the deriva-
tion of an asymptotic expansion of u leaving the details to the reader.

For x ∈ ∂Ω, by using the change of variables y = (x − z)/ε we may write

m∑

s=1

NDsψ
(s)(x) = εd−1

m∑

s=1

∫

∂Bs

N(x, εy + z)ψ(s)(εy + z) dσ(y) . (4.24)

We expand the Neumann function as in (2.35)

N(x, εy + z) =
∞∑

|j|=0

1
j!
ε|j|∂j

zN(x, z)yj . (4.25)

We then use the uniqueness of the solution to the integral equation (3.27) and
the expansion of the harmonic function H ,

H(x) := H(z) +
∞∑

|i|=1

1
i!

(∂iH)(z)(x− z)i, x ∈ D ,
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to show that

ψ(s)(εy + z) =
∞∑

|i|=1

ε|i|−1

i!
(∂iH)(z)ϕ(s)

i (y) , y ∈ ∂Bs , (4.26)

where ϕ(s)
i is the solution of (3.27). Substituting (4.25) and (4.26) into (4.24),

we obtain
m∑

s=1

NDsψ
(s)(x) =

∞∑

|i|=1

∞∑

|j|=0

ε|i|+|j|+d−2

i!j!
(∂iH)(z)∂j

zN(x, z)

×
m∑

s=1

∫

∂Bs

yjϕ
(s)
i (y)dσ(y) .

If j = 0, then
∫

∂Bs
yjϕ

(s)
i (y) dσ(y) = 0 for s = 1, . . . ,m, and hence we get

m∑

s=1

NDsψ
(s)(x) =

∞∑

|i|=1

∞∑

|j|=1

ε|i|+|j|+d−2

i!j!
(∂iH)(z)∂j

zN(x, z)Mij , (4.27)

where Mij is the generalized polarization tensor defined in (3.28).
We now convert the formula (4.27) to the one given solely by U and its

derivatives, not H . Using formula (4.16), we can show analogously to (v) in
Proposition 4.6 that

|∂iH(z) − ∂iU(z)| ≤ Cεd‖g‖L2(∂Ω) for i ∈ INd ,

where C is independent of ε and g. We finally have the following theorem.

Theorem 4.11 The following pointwise asymptotic expansion holds uni-
formly in x ∈ ∂Ω for d = 2 or 3:

u(x) = U(x) −
d∑

|i|=1

d∑

|j|=1

ε|i|+|j|+d−2

i!j!
(∂iU)(z)∂j

zN(x, z)Mij +O(ε2d) ,

where the remainder O(ε2d) is dominated by Cε2d‖g‖L2(∂Ω) for some constant
C independent of x ∈ ∂Ω.
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Detection of Inclusions

Taking advantage of the smallness of the inclusions, Cedio-Fengya, Moskow,
and Vogelius [73] used the leading-order term in the asymptotic expansion of
u to find the locations zs, s = 1, . . . ,m, of the inclusions and certain proper-
ties of the domains Bs, s = 1, . . . ,m (relative size, orientation). The approach
proposed in [73] is based on a least-squares algorithm. Ammari, Moskow, and
Vogelius [28] also utilized this leading-order term to design a direct recon-
struction method based on variational formulation. The idea in [28] is to form
the integral of the ”measured boundary data” against harmonic test func-
tions and choose the input current g so as to obtain an expression involving
the inverse Fourier transform of distributions supported at the locations zs,
s = 1, . . . ,m. Applying a direct Fourier transform to this data then pins down
the locations. This approach is similar to the method developed by Calderón
[69] in his proof of uniqueness of the linearized conductivity problem and
later by Sylvester and Uhlmann in their important work [248] on uniqueness
of the three-dimensional inverse conductivity problem. The main disadvan-
tage of this algorithm is the fact that it uses current sources of exponential
type. This is one important practical issue, which we do not attempt to ad-
dress, and which needs to be resolved. A more realistic real-time algorithm
for determining the locations of the inclusions has been developed by Kwon,
Seo, and Yoon [191]. This fast, stable, and efficient algorithm is based on the
observation of the pattern of a simple weighted combination of an input cur-
rent g of the form g = a · ν for some constant vector a and the corresponding
output voltage. In all of these algorithms, the locations zs, s = 1, . . . ,m, of
the inclusions are found with an error O(ε), and little about the domains Bs

can be reconstructed. Moreover, to put these algorithms into use, one requires
that the size of the inclusions be very small.

In this chapter we apply the accurate asymptotic formula (4.2) for the
purpose of identifying the location and certain properties of the shape of
the conductivity inclusions. By improving the algorithm of Kwon, Seo, and
Yoon [191] we first design two real-time algorithms with good resolution
and accuracy. We then describe the least-squares algorithm and the varia-

H. Ammari and H. Kang: LNM 1846, pp. 79–101, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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tional algorithm introduced in [28] and review the interesting approach pro-
posed by Brühl, Hanke, and Vogelius [64]. Their method is in the spirit
of the linear sampling method of Colton and Kirsch [89]. Furthermore, we
give Lipschitz-continuous dependence estimates for the reconstruction prob-
lem. These estimates, established by Friedman and Vogelius [123], bound
the difference in the location and relative size of two sets of inclusions
by the difference in the boundary voltage potentials corresponding to a
fixed current distribution. We conclude the chapter by presenting upper
and lower bounds on the moments of the unknown inclusions. We refer to
[181, 184, 240, 244, 100, 247, 65, 62, 63, 147, 151, 152, 194, 201, 142, 102, 59, 60]
for other numerical methods aimed at solving the inverse conductivity prob-
lem in different settings.

We conclude this introduction with a comment on the uniqueness ques-
tion of the inverse conductivity problem with one (or two) measurements.
This question is whether a single (or two) Cauchy data (u|∂Ω , g) is suffi-
cient to determine the conductivity inclusion D uniquely. It has been stud-
ied extensively recently. However, it is still wide open. Even the uniqueness
within the classes of ellipses and ellipsoids is not known. The global unique-
ness results are only obtained when D is restricted to convex polyhedrons
and balls in three-dimensional space and polygons and disks in the plane (see
[48, 46, 122, 159, 242, 169, 170]). We refer the reader to Appendix A.4.2 for
the unique determination of disks with one measurement.

5.1 Constant Current Projection Algorithm –
Reconstruction of Single Inclusion

The constant current projection algorithm has been developed by Ammari and
Seo in [29]. To bring out the main ideas of this algorithm we only consider the
case where D has one component of the form εB + z. Based on Theorem 4.1
and two more observations we rigorously reconstruct, with good resolution
and accuracy, the location, the size and the polarization tensors from the
observation in the near field (x near ∂Ω) and the far field (x far from ∂Ω) of
the pattern H(x), which is computed directly from the current-voltage pairs.

The mathematical analysis provided in this section indicates that the con-
stant current projection algorithm has good resolution and accuracy.

As we said before, this algorithm makes use of constant current sources.
For any unit vector a ∈ IRd, d = 2, 3, let H [a · ν] denote the function H in
(2.40) corresponding to the Neumann data

g(y) =
∂

∂ν
(a · y) = a · νy , y ∈ ∂Ω .

The expression D = εB+z requires some care because it can be expressed
in infinitely many different ways. For a unique representation, we need to
select a canonical domain B which is a representative domain of the set of all
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D = εB+ z. Assume for simplicity that k > 1. Let Tλ be the set of all strictly
star shaped domains B satisfying

∫

B

xdx = 0 , |M(k,B)| = 1 ,

where |M | is the determinant of the matrix M and M(k,B) is the polarization
tensor of Pólya–Szegö associated with the domain B and the conductivity
k = (2λ + 1)/(1 − 2λ). Then, by using the essential fact from Chap. 3 that
M(k,B) is a symmetric positive definite matrix and so, its determinant cannot
vanish, it is not hard to see that if ε1B1 + z1 = ε2B2 + z2, where B1 and B2

belong to Tλ then z1 = z2, ε1 = ε2, and B1 = B2. Note that if 0 < k < 1 then
M(k,B) is a symmetric negative definite matrix. Throughout this chapter,
we assume that B ∈ Tλ.

The first step for the reconstruction procedure is to compute ε andM(k,B)
up to an error of order εd.

Theorem 5.1 (Size estimation) Let S be a C2-closed surface (or curve in
IR2) enclosing the domain Ω. Then for any vectors a and a∗ we have

∫

S

∂H [a · ν]
∂ν

(x) a∗ · xdσ(x) −
∫

S

H [a · ν](x) a∗ · νx dσ(x)

= −a∗ · (εdM(k,B) · a) +O(ε2d) .
(5.1)

Proof. Let Ω′ denote the domain inside S, that is, ∂Ω′ = S. Since S ⊂ IRd\Ω,
it follows from (2.43) that for any vector a, H [a · ν] = −SDφ on S, where

φ = (λI −K∗
D)−1(

∂H

∂ν
|∂D) .

Thus the left side of (5.1) is in fact equal to

−
∫

S

∂

∂ν
(SDφ(x)) a∗ · xdσ(x) +

∫

S

SDφ(x) a∗ · νx dσ(x) . (5.2)

Using the fact that ∆SDφ = 0 in IRd \ ∂D and the divergence theorem on
Ω′ \D, we can see that the term in (5.2) equals to

−
∫

∂D

∂(SDφ(x))
∂ν

∣
∣
∣
∣
+

a∗ · xdσ(x) +
∫

∂D

SDφ(x) a∗ · νx dσ(x) .

Then by the jump relation (2.12), it equals to

−
∫

∂D

a∗ · x φ(x) dσ(x) .

Setting h̃(y) = ∂
∂νH [a · ν](z + εy), we have by a change of variables
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∫

∂D

a∗ · y φ(y) dσ(y) = εd
∫

∂B

a∗ · y (λI −K∗
B)−1h̃(y) dσ(y) .

The estimate (v) in Proposition 4.6 provides the expansion
∫

∂B

a∗ ·y (λI−K∗
B)−1h̃(y) dσ(y) =

∫

∂B

a∗ ·y (λI−K∗
B)−1(ν ·a) dσ(y)+O(εd) ,

which leads us to the identity (5.1). ��
Now, let us explain how to compute ε and M(k,B) up to an error of order

εd using Theorem 5.1.
Let A be the d×d matrix defined by A =

√
BBT , where the pq-component

of B is equal to
∫

S

∂H [ep · ν]
∂ν

(x)eq · xdσ(x) −
∫

S

H [ep · ν](x)eq · νx dσ(x) .

Here B
T is the transpose of the matrix B and {ep}d

p=1 is an orthonormal basis
of IRd. Define

ε∗ = d2√|A|, M∗ :=
1

(ε∗)d
A .

According to Theorem 5.1 we immediately see that

ε∗ = ε(1 +O(εd)) and M∗ = M(k,B) +O(εd) . (5.3)

Note that slightly different size estimations can be obtained by making
use of Lemma 3.8, see [71, 72]. It can be shown that

1
d− 1 + 1

k

Tr(A)
k − 1

≤ |D|(1 +O(ε)) ≤ Tr(A)
k − 1

d− 1 + k

d2
.

Because of the normalization |M(k,B)| = 1, the knowledge of M does not
determine k. Equivalently, it is not possible to determine ε and k simultane-
ously from the knowledge of the lowest-order term in the asymptotic expansion
of the pattern H .

Observe that by construction the real matrix M∗ is symmetric positive
definite. Let 0 < τ1 ≤ τd−1 ≤ τd be the eigenvalues of M(k,B). Using once
again the fact that M(k,B) is a symmetric positive definite matrix it follows
that there is a constant C depending only on the Lipschitz character of B
such that C < τp < 1/C and therefore, for ε small enough, the eigenvalues
{τ (p)

∗ }d
p=1 of M∗ satisfy the same estimates.

Having recovered (approximately) the polarization tensor of Pólya–Szegö
M(k,B), we now compute an orthonormal basis of eigenvectors a(1)

∗ , . . . , a
(d)
∗

of M∗. We will use these eigenvectors for recovering the location z. Let Σp be
a line parallel to a(p)

∗ such that

dist (∂Ω,Σp) = O

(
1

(ε∗)d−1

)

, p = 1, . . . , d .
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For any x ∈ Σp it is readily seen from (4.21) and (5.3) that for background
potentials Up given by

Up(x) = a
(p)
∗ · x− 1

|∂Ω|

∫

∂Ω

a
(p)
∗ · y dσ(y) , p = 1, . . . , d ,

(or equivalently for the currents g = a
(p)
∗ · ν) the following asymptotic expan-

sion holds:

H [a(p)
∗ · ν](x) = −τ (p)

∗
(ε∗)d

ωd|x− z|d (x− z) · a(p)
∗ +O(

ε2d

|x− z|d−1
) (5.4)

for all x ∈ Σp, where τ (p)
∗ is the eigenvalue of M∗ associated with the eigen-

vector a(p)
∗ .

In fact, this is the far field expansion of the pattern H [a(p)
∗ ·ν], from which

we find the location z with an error of order O(εd). To get some insight,
let us neglect the asymptotically small remainder O(ε2d) in the asymptotic
expansion (5.4).

Our second important observation is that, since M∗ is symmetric positive
and the set of eigenvalues a(1)

∗ , . . . , a
(d)
∗ forms an orthonormal basis of IRd, we

will find exactly d points zp
∗ ∈ Σp, p = 1, . . . , d, so that H [a(p)

∗ · ν](zp
∗) = 0.

Finally, the point z∗ =
∑d

p=1(z
p
∗ ·a(p)

∗ ) a(p)
∗ is very close to z, namely |z∗−z| =

O(εd).

Theorem 5.2 (Detection of the location) Let a
(1)
∗ , . . . , a

(d)
∗ denote the

mutually orthonormal eigenvectors of the symmetric matrix M∗. For each
p = 1, · · · , d, let H [a(p)

∗ · ν] be the function H in (2.40) corresponding to
the Neumann data g = a

(p)
∗ · ν and let Σp be a line with the direction a

(p)
∗

so that dist (∂Ω,Σp) = O(1/(ε∗)d−1). Then there exist zp
∗ ∈ Σp so that

H [a(p)
∗ · ν](zp

∗) = 0. Moreover, the point z∗ =
∑d

p=1(z
p
∗ · a(p)

∗ )a(p)
∗ satisfies

the following estimate
|z∗ − z| ≤ Cεd , (5.5)

where the constant C is independent of ε and z.

Proof. From (5.4) it follows that there exists a positive constant C, indepen-
dent of x, z, and ε such that

H [a(p)
∗ · ν](x) ≥ − εd

ωd|x− z|d−1

(
τ

(p)
∗

(x− z)
|x− z| · a

(p)
∗ + Cεd

)
for all x ∈ Σp ,

H [a(p)
∗ · ν](x) ≤ − εd

ωd|x− z|d−1

(
τ

(p)
∗

(x− z)
|x− z| · a

(p)
∗ − Cεd

)
for all x ∈ Σp .

For x ∈ Σp satisfying
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(x− z)
|x− z| · a

(p)
∗ < − C

τ
(p)
∗

εd

we have H [a(p)
∗ · ν](x) > 0. On the other hand, for x ∈ Σp satisfying

(x − z)
|x − z| · a

(p)
∗ >

C

τ
(p)
∗

εd ,

we similarly have H [a(p)
∗ · ν](x) < 0. Therefore, the zero point z∗ satisfies

|(z∗ − z) · a(p)
∗ | ≤ Cεd, for p = 1, . . . , d ,

which implies that (5.5) holds, since {a(p)
∗ }d

p=1 forms an orthonormal basis of
IRd. ��

Finally, to find more geometric features of the domain B and its conduc-
tivity k, we use higher-order terms in the asymptotic expansion of H which
follows from a combination of the estimate (v) in Proposition 4.6 and the
expansion (4.21):

H [a · ν](x) = −
∑

|i|=1

d∑

|j|=1

ε|i|+|j|+d−2

j!
a∂j

zΓ (x− z)Mij +O(ε2d) . (5.6)

Since z, ε, and the polarization tensor M are now recovered with an error
O(εd), the reconstruction of the higher-order polarization tensors, Mij , for
|i| = 1 and 2 ≤ |j| ≤ d, could easily been done by inverting an appropriate
linear system arising from (5.6). Then we could determine the conductivity k
from the knowledge of Mij , for 1 ≤ |i|, |j| ≤ d.

The main results in this section are summarized in the following recon-
struction procedure.

[Constant current projection algorithm]

For any unit vector a let H [a · ν] be the function H in (2.40) corresponding
to the Neumann data g(y) = a · νy, y ∈ ∂Ω. Let {ep}d

p=1 denote the stan-
dard orthonormal basis of IRd. Let S be a C2-closed surface (or curve in IR2)
enclosing the domain Ω.

Step 1: Compute H [ep · ν](x) for x ∈ S to calculate the matrix A =
√

BBT ,
where the pq-component of B is equal to

∫

S

∂H [ep · ν]
∂ν

(x)eq · xdσ(x) −
∫

S

H [ep · ν](x)eq · νx dσ(x)

and B
T is the transpose of the matrix B. Then

ε∗ = d2√|A| = ε(1 +O(εd)) and M∗ :=
1

(ε∗)d
A = M(k,B) +O(εd) .

Here |A| denotes the determinant of A.
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Step 2: Compute an orthonormal basis {a(p)
∗ }d

p=1 of eigenvalues of the sym-
metric positive definite matrix M∗.

Step 3: ConsiderΣp to be a line with the direction a(p)
∗ so that dist (∂Ω,Σp) =

O(1/(ε∗)d−1) and zp
∗ ∈ Σp so that H [a(p)

∗ · ν](zp
∗) = 0. Then the point

z∗ =
∑d

p=1(z
p
∗ · a(p)

∗ )a(p)
∗ satisfies the estimate |z∗ − z| = O(εd).

Step 4: Recover the higher-order polarization tensors Mij , for |i| = 1 and
2 ≤ |j| ≤ d, by solving an appropriate linear system arising from (5.6)
and then determine the conductivity k from the knowledge of Mij , for
1 ≤ |i|, |j| ≤ d.
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Fig. 5.1. Detection of the location and the polarization tensor of a small inclusion
by the constant current projection algorithm.

5.2 Quadratic Algorithm – Detection of Closely Spaced
Inclusions

Recall that the constant current projection algorithm uses only linear solu-
tions. In this section, we design an other algorithm using quadratic solutions.
We apply this algorithm for the purpose of reconstructing the first-order po-
larization tensor and the center of closely spaced small inclusions from a finite
number of boundary measurements. As before, the algorithm is based on the
asymptotic expansion formula (4.19). For g ∈ L2

0(∂Ω), define the harmonic
function H [g](x), x ∈ IRd \Ω, by

H [g](x) := −SΩ(g)(x) + DΩ(u|∂Ω)(x) , x ∈ IRd \Ω , (5.7)

where u is the solution of (4.22). Then by substituting (4.19) into (5.7) and
using a simple formula DΩ(N(·−z))(x) = Γ (x−z) for z ∈ Ω and x ∈ IRd \Ω,
we get

H [g](x) = −
d∑

|i|=1

d∑

|j|=1

ε|i|+|j|+d−2

i!j!
(∂iU)(z)∂j

zΓ (x− z)Mij +O(ε2d) . (5.8)
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Assume for the sake of simplicity that d = 2. The reconstruction procedure
is the following.

[Quadratic algorithm]

Step 1: For gp = ∂xp/∂ν, p = 1, 2, measure u|∂Ω.
Step 2: Compute the first-order polarization tensor ε2M = ε2(mpq)d

p,q=1 for
D by

ε2mpq = lim
t→∞ 2πtH [gp](teq) .

Step 3: Compute hp = limt→∞ 2πtH [g3](tep) for g3 = ∂(x1x2)
∂ν , p = 1, 2. Then

the center is estimated by solving

z = (h1, h2)(ε2M)−1 .

Step 4: Let the overall conductivity k̄ = ∞ if the polarization tensor M is
positive definite. Otherwise assume k̄ = 0. Use results from Subsect. 3.6.3
to obtain the shape of the equivalent ellipse.

In order to collect data u|∂Ω in Step 1, we solve the direct problem (2.37)
as follows. Using the formula (4.23) and the jump relations (2.12) and (2.13),
we have, for s = 1, . . . ,m, the following equation:






u =
u

2
+ KΩu− SΩg +

m∑

s=1

SDsψ
(s) on ∂Ω ,

(λsI −K∗
Ds

)ψ(s) −
∑

l �=s

∂(SDl
ψ(l))

∂ν(s)

∣
∣
∂Ds

=
∂H

∂ν(s)

∣
∣
∂Ds

on ∂Ds .

We solve the integral equation using the collocation method and obtain u|∂Ω

on ∂Ω for given data g.
A few words are required for the Step 4. In order to find the overall con-

ductivity, it is necessary to know the individual conductivity ks and the size of
Bs, s = 1, . . . ,m, which seems impossible. Thus we assume a priori that k̄ is
either ∞ or 0 depending upon the sign of detected polarization tensor. There-
fore it is natural that the quadratic algorithm gives better information when
the conductivity contrast between the background and inclusions is high. We
illustrate in Fig. 5.2 the viability of this algorithm. Rigorous justification of
the validity of this algorithm follows from the arguments we just went through
for the constant current projection algorithm.

We conclude this section with a comment on stability. In general, the
measured voltage potential contains the unavoidable observation noise, so that
we have to answer the stability question. Fortunately, the constant current
projection and quadratic algorithms are totally based on the observation of
the pattern of H ; thus if

Hmeas[g](x) := −SΩ(g)(x) + DΩ(umeas) for x ∈ IRd \Ω ,
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Fig. 5.2. Reconstruction of closely spaced small inclusions. The dashed line is the
equivalent ellipse and the dash-dot line is the detected ellipse. The numerical values
are given in Table 5.1.

where umeas is the measured voltage on the boundary, then we have the
following stability estimate

|Hmeas[g](x) −H [g](x)| ≤
∣
∣
∣
∣

∫

∂Ω

∂Γ

∂νy
(x− y)

(

umeas − u

)

(y) dσ(y)
∣
∣
∣
∣

≤ C ||umeas − u||L2(∂Ω) ,

where C is a constant depending only on the distance of x from ∂Ω. Thus
we have to conclude that the constant current projection and quadratic algo-
rithms are not sensitive to the observation noise.



88 5 Detection of Inclusions

ki ai
0, a

i
1, a

i
2, b

i
0, b

i
1, b

i
2 k̄ ā b̄ θ̄ z̄

k a b θ z

100 5.5, 0.2, 0, 5.2, 0.2, 0 60.079 0.511 0.468 0.000 (4.838, 4.900)
100 5.5, 0.2, 0, 4.6, 0.2, 0 ∞ 0.502 0.461 0.000 (4.856, 4.899)
50 4.5, 0.4, 0, 4.9, 0.4, 0

1.5 -7.4, 0.2, 0, -4, 0.2, 0 1.5 0.474 0.190 0.000 (-6.844, -4.000)
1.5 -6.4, 0.5, 0, -4, 0.1, 0 ∞ 0.146 0.123 0.000 (-6.875, -4.000)

100 0.1, 0.2, 0, 0, 0.2, 0
100 -0.3, 0.2, 0, -0.4, 0.2, 0 3.88 0.511 0.315 0.785 (-0.236, -0.336)
1.5 -0.7, 0.2, 0, -0.8, 0.2, 0 ∞ 0.355 0.267 0.785 (-0.233, -0.333)
1.5 -1.1, 0.2, 0,-1.2, 0.2, 0

5 2.9, 0.4, 0, -2.7, 0.1, 0 18.655 0.491 0.365 0.443 (2.494, -3.375)
100 2.5, 0.25, 0.2, -3.3, 0.25, 0.05 ∞ 0.458 0.351 0.443 (2.434, -3.321)
50 2.0, 0.2, 0, -4.0, 0.2, 0

5 4.5, 0.15, 0.2, -3, 0.25, 0.05
5 5.2, 0.1, 0, -3, 0.4, 0 5 0.507 0.419 -0.000 (5.502, -3.000)
5 5.8, 0.15, 0.2, -3, 0.25,0.05 ∞ 0.401 0.353 -0.000 (5.436, -3.000)
5 6.6, 0.2, 0, -3, 0.2, 0

100 6.0, 0.25, 0.2, 4.6, 0.25, 0.05 100 0.549 0.331 -0.089 (5.728, 4.772)
100 5.5, 0.4, 0, 5.2, 0.1, 0 ∞ 0.540 0.329 -0.089 (5.712, 4.817)
100 5.2, 0.2, 0, 4.7, 0.2, 0

Table 5.1. Table for Fig. 5.2. Here k̄, z̄ are the overall conductivity and center
defined by (3.41) and (3.42). ā, b̄, and θ̄ are semi axis lengths and the angle of
orientation of the equivalent ellipse while a, b, and θ are those of detected ellipse
assuming k = ∞. The point z is the detected center.

5.3 Least-Squares Algorithm

In this section we consider m inclusions Ds, s = 1, . . . ,m, each of the form
Ds = εsBs+zs where each Bs ∈ Tλs . Here λs = (ks+1)/(2(ks−1)). Let S be a
C2-closed surface (or curve in IR2) enclosing the domain Ω. The least-squares
algorithm is based on the minimization of a discrete L2-norm of the residual

H [g](x) +
m∑

s=1

d∑

|i|=1

d∑

|j|=1

ε
|i|+|j|+d−2
s

i!j!
(∂iU)(zs)∂j

zΓ (x− zs)M s
ij

on S. Here M s
ij = Mij(ks, Bs). We select L equidistant points, x1, . . . , xL, on

S and we seek the unknown parameters of the inclusions Ds as the solution
to the nonlinear least-squares problem

min
L∑

l=1

∣
∣
∣
∣
∣
∣
H [g](xl) +

m∑

s=1

d∑

|i|=1

d∑

|j|=1

ε
|i|+|j|+d−2
s

i!j!
(∂iU)(zs)∂j

zΓ (xl − zs)M s
ij

∣
∣
∣
∣
∣
∣

2

.
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We minimize over {m, zs, εs, ks, Bs} when all the parameters are unknown;
however, there may be considerable non-uniqueness of the minimizer in this
general case. If the inclusions are assumed to be of the form zs + εsQsB, for
a common known domain B, but unknown locations, zs, and rotations Qs

then if εs and ks are known, the least-squares algorithm can be applied to
successfully determine the number m of inclusions, the locations zs and the
rotations Qs, as demonstrated by numerical examples in [73].

5.4 Variational Algorithm

This algorithm is based on the original idea of Calderón [69], which was, by
the way of a low amplitude perturbation formula, to reduce the reconstruction
problem to the calculations of an inverse Fourier transform. It may require
quite a number of boundary measurements, but if these are readily available,
then the approach is rapid and simple to implement.

For arbitrary η ∈ IRd, one assumes that one is in possession of the bound-
ary data for the voltage potential, u, whose corresponding background po-
tential is given by U(y) = ei(η+iη⊥)·y (boundary current gη(y) = i(η + iη⊥) ·
νye

i(η+iη⊥)·y on ∂Ω), where η⊥ ∈ IRd is orthogonal to η with |η| = |η⊥|.
If S is a C2-closed surface (or curve in IR2) enclosing the domain Ω then,

analogously to (5.1), one can easily prove that

E(η) :=
∫

S

∂

∂ν
H [gη](y) ei(η−iη⊥)·y dσ(y)

− i

∫

S

H [gη](y) νy · (η − iη⊥) ei(η−iη⊥)·y dσ(y)

=
m∑

s=1

εds(η + iη⊥) ·M s · (η − iη⊥)e2iη·zs +O(εd+1) ,

(5.9)

where ε = sups εs and M s = M(ks, Bs).
Recall that the function e2iη·zs (up to a multiplicative constant) is ex-

actly the Fourier transform of the Dirac function δ−2zs (a point mass located
at −2zs). Multiplication by powers of η in the Fourier space corresponds to
differentiation of the Dirac function. The function E(η) is therefore (approxi-
mately) the Fourier transform of a linear combination of derivatives of point
masses, or

Ě �
m∑

s=1

εdsLsδ−2zs ,

where Ls is a second-order constant coefficient, differential operator whose
coefficients depend on the polarization tensor of Pólya–Szegö M s, and Ě rep-
resents the inverse Fourier transform of E(η).

The variational algorithm consists then of sampling the values of E(η) at
some discrete set of points and then calculating the corresponding discrete
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inverse Fourier transform. After a re-scaling (by −1/2) the support of this
inverse Fourier transform yields the location of the inclusions. Once the loca-
tions are known, one may calculate the polarization tensors of Pólya–Szegö
by solving the appropriate linear system arising from (5.9).

To arrive at some idea of the number of the sampling points needed for
an accurate discrete Fourier inversion of E(η) we remind the reader of the
main assertion of the so-called Shannon’s sampling theorem [96]: A function
f is completely specified (by a very explicit formula) by the sampled values
{f(c0 + n/h)}+∞

n=−∞ if and only if the support of the Fourier transform of
f is contained inside a square of side h. For the variational algorithm this
suggests two things: (1) if the inclusions are contained inside a square of side
h, then we need to sample E(η) at a uniform, infinite, rectangular grid of
mesh-size 1/h to obtain an accurate reconstruction, (2) if we only sample the
points in this grid for which the absolute values of the coordinates are less
than K, then the resulting discrete inverse Fourier transform will recover the
location of the inclusions with a resolution of δ = 1/2K. In summary: we need
(conservatively) of the order hd/δd sampled values of E(η) to reconstruct, with
a resolution δ, a collection of inclusions that lie inside a square of side h. The
reader is referred to [261] for a review of the fundamental mechanism behind
the FFT method for inverting the quantity in (5.9).

The following numerical examples from [28] clearly demonstrate the via-
bility of the variational approach.

(a) (b)

Fig. 5.3. Five inclusions - (a): 30 x 30 sample points, (b): 20 x 20 sample points.

We take the domain Ω to be the square [−10, 10]× [−10, 10] and we insert
five inclusions in the shape of balls, with the sth-ball positioned at the point
(s, s). We take each M s to be 10 × I and ε = 0.1. We sample E(η) on the
square [−3, 3]× [−3, 3] with a uniform 30× 30 grid in (a) (900 sample points)
and 20 × 20 grid in (b) (400 sample points). We are thus following the recipe
from above, with h = 5 and K = 3. We should expect a recovery of all the
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locations of the inclusions, with a resolution δ = 1/6. The discrete inverse
Fourier transform yields the grey-level (intensity) plot shown in Figs. 5.3. In
Fig. 5.3 (a) we see that the five balls are still visible.

In order to simulate errors in the boundary measurements, as well as in
the different approximations, we add on the order of 10% of random noise to
the values of E(η). We see from the following figures that the reconstruction
is quite stable.

(a) (b)

Fig. 5.4. Five inclusions with 10% noise- (a): 30 x 30 sample points, (b): 20 x 20
sample points.

5.5 Linear Sampling Method

We now describe the interesting approach proposed by Brühl, Hanke, and Vo-
gelius in their recent paper [64]. This approach is related to the linear sampling
method of Colton and Kirsch [89] (see also [177] and [62]) and allows one to
reconstruct small inclusions by taking measurements only on some portion of
∂Ω. It has also some similarities to a MUltiple Signal Classification (MUSIC)-
type algorithm developed by Devaney [99, 193] for estimating the locations
of a number of pointlike scatterers. We refer to Cheney [77] and Kirsch [178]
for detailed discussions of the connection between MUSIC algorithm and the
linear sampling method. See also Sect. 13.2.2.

Let ∂ω be a subset of ∂Ω with positive measure and define L2
0(∂ω) to be

those functions in L2(∂ω) with zero integral over ∂ω. Let D = ∪m
s=1(εBs + zs)

be a collection of small inclusions with conductivities 0 < ks �= 1 < +∞, s =
1, . . . ,m, and satisfying

|zs − zs′ | ≥ 2c0 > 0 ∀ s �= s′ and dist(zs, ∂Ω) ≥ 2c0 > 0 ∀ s . (5.10)
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For a function g ∈ L2
0(∂ω) we can solve the problems






∇ ·
(

1 + (k − 1)χ(D)
)

∇u = 0 in Ω ,

∂u

∂ν
= g on ∂ω ,

∂u

∂ν
= 0 on ∂Ω \ ∂ω ,

∫

∂ω

u(x) dσ(x) = 0 ,

(5.11)

and 




∆U = 0 in Ω ,

∂U

∂ν
= g on ∂ω ,

∂U

∂ν
= 0 on ∂Ω \ ∂ω ,

∫

∂ω

U(x) dσ(x) = 0 .

(5.12)

Define the partial Neumann-to-Dirichlet map on L2
0(∂ω) by ΛD(g) = u|∂ω. Let

Λ0 be the partial Neumann-to-Dirichlet map on L2
0(∂ω) for the case in which

no conductivity inclusions are present. We seek to use ΛD − Λ0 to determine
D. In this connection we shall first establish the following.

Lemma 5.3 The operator ΛD − Λ0 : L2
0(∂ω) → L2

0(∂ω) is compact, self-
adjoint, positive (respectively negative) semi-definite, if 0 < ks < 1 (respec-
tively +∞ > ks > 1) for all s = 1, . . . ,m.

Proof. Let g ∈ L2
0(∂ω), and let u and U denote the solutions of (5.11) and

(5.12). An easy application of Green’s theorem gives

u(x) = DΩ(u|∂Ω) + (k− 1)
∫

D

∇u(y) · ∇Γ (x− y) dy−
∫

∂ω

g(y)Γ (x− y) dσ(y)

and
U(x) = DΩ(U |∂Ω) −

∫

∂ω

g(y)Γ (x− y) dσ(y), x ∈ Ω .

Subtracting these two equations and letting x goes to ∂Ω yields

(
1
2
I −KΩ)(u − U) = (k − 1)

∫

D

∇u(y) · ∇Γ (x− y) dy for any x ∈ ∂Ω .

By using (2.13) and (2.52) together with the fact that
∫

∂ω

(u− U)(y) dσ(y) = 0 ,

the above equation implies that
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(ΛD − Λ0)g(x) = (1 − k)
∫

D

∇u(y) · ∇Γ (x− y) dy + C for x ∈ ∂ω ,

where the constant C is given by

C = (k − 1)
∫

∂ω

∫

D

∇u(y) · ∇Γ (x− y) dy dσ(x) .

From the smoothness of
∫

D ∇u(y)·∇Γ (x−y) dy|∂ω we conclude that ΛD−Λ0 :
L2

0(∂ω) → L2
0(∂ω) is compact. Moreover, by using (2.58) and (2.59), we can

prove that
||u− U ||L2(∂ω) ≤ C||∇u||L2(D) ≤ C′||g||L2(∂ω) ,

for some positive constant C′ independent of g which indicates that ΛD −Λ0

is bounded. Thus, to prove that ΛD − Λ0 is self-adjoint it suffices to show
that it is symmetric. Consider h ∈ L2

0(∂ω) and v and V to be the solutions
of (5.11) and (5.12) corresponding to the Neumann data h. Using integration
by parts we can establish the following identity
∫

∂ω

(ΛD − Λ0)(g)h = −
∫

Ω

∇(u − U) · ∇(v − V )+
m∑

s=1

(1 − ks)
∫

εBs+zs

∇u · ∇v

=
∫

Ω

(

1 +
m∑

s=1

(ks − 1)χ(εBs + zs)
)

∇(u− U) · ∇(v − V )

+
m∑

s=1

(1 − ks)
∫

εBs+zs

∇U · ∇V .

This gives, as desired, that ΛD−Λ0 : L2
0(∂ω) → L2

0(∂ω) is self-adjoint, positive
(respectively negative) semi-definite, if 0 < ks < 1 (respectively +∞ > ks >
1) for all s = 1, . . . ,m. ��

Next, let Ñ be the solution to





∆xÑ(x, z) = −δz in Ω,

∂Ñ

∂νx

∣
∣
∂ω

= − 1
|∂ω| ,

∂Ñ

∂νx

∣
∣
∂Ω\∂ω

= 0 ,
∫

∂ω

Ñ(x, z) dσ(x) = 0 for z ∈ Ω .

(5.13)

Similarly to (4.4), we can prove without any new difficulties that

(ΛD − Λ0)(g)(x) = −εd
m∑

s=1

∂U(zs)M(ks, Bs)∂zÑ(x, zs) +O(εd+1) ,

uniformly on ∂ω, where the remainder O(εd+1) is bounded by Cεd+1 in the
operator norm of L(L2

0(∂ω), L2
0(∂ω)) and U is the background solution, that
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is, the solution of (5.12). Here L(L2
0(∂ω), L2

0(∂ω)) is the set of linear bounded
operators on L2

0(∂ω). Define the operator T : L2
0(∂ω) → L2

0(∂ω) by

T (g) = −
m∑

s=1

∂U(zs)M(ks, Bs)∂zÑ(·, zs) .

Since U depends linearly on g this operator is linear. Corresponding to Lemma
5.3 the following result can be obtained.

Lemma 5.4 The operator T : L2
0(∂ω) → L2

0(∂ω) is compact, self-adjoint,
positive (respectively negative) semi-definite, if 0 < ks < 1 (respectively +∞ >
ks > 1) for all s = 1, . . . ,m.

Proof. We first observe that T is a finite-dimensional operator and hence,
it is compact. Moreover, to prove that T is self-adjoint it suffices to show
that it is symmetric. Let g and h be in L2

0(∂ω) and denote by U and V the
background solutions corresponding to g and h. We have

∫

∂ω

T (g)h = −
m∑

s=1

∂U(zs)M(ks, Bs)
∫

∂ω

∂zÑ(x, zs)
∂V

∂ν
(x) dσ(x)

= −
m∑

s=1

∂U(zs)M(ks, Bs)
∫

∂Ω

∂zÑ(x, zs)
∂V

∂ν
(x) dσ(x) .

But since ∂xÑ = −∂zÑ we have ∆x∂zÑ = ∂xδx=z and therefore
∫

∂Ω

∂zÑ(x, zs)
∂V

∂ν
(x) dσ(x) = ∂V (zs) .

Consequently,

∫

∂ω

T (g)h = −
m∑

s=1

∂U(zs)M(ks, Bs)∂V (zs) .

From the symmetry and the positive definiteness of the matrices M(ks, Bs)
established in Theorem 3.6 we infer that T is self-adjoint, positive (respectively
negative) semi-definite, if 0 < ks < 1 (respectively +∞ > ks > 1) for all
s = 1, . . . ,m. ��

Introduce now the linear operator G : L2
0(∂ω) → IRd×m defined by

Gg = (∂U(z1), . . . , ∂U(zm)) .

Endowing IRd×m with the standard Euclidean inner product,

〈a, b〉 =
m∑

s=1

as · bs for a = (a1, . . . , am), b = (b1, . . . , bm), as, bs ∈ IRd ,
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we then obtain

〈Gg, a〉 =
m∑

s=1

as · ∂U(zs) =
∫

∂ω

( m∑

s=1

as · ∂Ñ(x, zs)
)

g(x) dσ(x) ,

for arbitrary a = (a1, . . . , am) ∈ IRd×m.
Therefore, the adjoint G∗ : IRd×m → L2

0(∂ω) is given by G∗a =
∑m

s=1 as ·
∂Ñ(·, zs).

A characterization of the range of the operator T is obtained in the fol-
lowing lemma due to Brühl, Hanke, and Vogelius [64].

Lemma 5.5 (i) G∗ is injective;
(ii) G is surjective;
(iii) T = G∗MG, where

Ma =
(

M(k1, B1)a1, . . . ,M(km, Bm)am

)

, a = (a1, . . . , am) ∈ IRd×m ;

(iv) Range(T ) = span
{

ep · ∂Ñ(·, zs), p = 1, . . . , d; s = 1, . . . ,m
}

, where

{ep}d
p=1 is an orthonormal basis of IRd.

Proof. Suppose that G∗a = 0 then the function w(x) =
∑m

s=1 as · Ñ(x, zs)
solves the Cauchy problem ∆w = 0 in Ω \ ∪m

s=1{zs}, w = ∂w/∂ν = 0 on ∂ω,
and from the uniqueness of a solution to this problem we deduce that w ≡ 0.
The dipole singularity of Ñ(x, zs) at zs implies that

as ·
(x− zs)
|x− zs|d

→ 0 as x→ zs, s = 1, . . . ,m .

This proves that as = 0, and thus assertion (i) holds. (ii) follows from (i)
and the well-known relation between the ranges and the null spaces of adjoint
finite-dimensional operators: Range(G) = Ker(G∗)⊥. Using the above formula
for G and G∗ it is easy to see that (iii) holds. Now according to (iii), we write
Range(T ) = Range(G∗MG) = Range(G∗), since M and G are surjective.
This yields (iv). ��

Now we present the main tool for the identification of the locations zs.
The following theorem is also due to Brühl, Hanke, and Vogelius [64].

Theorem 5.1. Let e ∈ IRd \ {0}. A point z ∈ Ω belongs to the set {zs : s =

1, . . . ,m} if and only if e · ∂zÑ(·, z)
∣
∣
∣
∣
∂ω

∈ Range (T ).

Proof. Assume that gz,e = e · ∂zÑ(·, z)
∣
∣
∣
∣
∂ω

∈ Range (T ). As a consequence

of (iv), gz,e may be represented as
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gz,e(x) =
m∑

s=1

as · ∂zÑ(x, z) for x ∈ ∂ω .

But then by the uniqueness of a solution to the Cauchy problem it follows
that

m∑

s=1

as · ∂zÑ(x, z) = e · ∂zÑ(x, z) for all x ∈ Ω \ (∪m
s=1{zs} ∪ {z}) .

This is only possible if z ∈ {zs : s = 1, . . . ,m}, and so we have established
the necessity of this condition. The sufficiency follows immediately from (iv)
in Lemma 5.5. ��

The finite-dimensional self-adjoint operator T can be decomposed as

T =
dm∑

p=1

λpvp v
∗
p, ||vp||L2(∂ω) = 1 ,

say with |λ1| ≥ |λ2| ≥ . . . ≥ |λdm| > 0. Let Pp : L2
0(∂ω) → span {v1, . . . , vp},

p = 1, . . . , dm, be the orthogonal projector Pp =
∑p

q=1 vq v
∗
q . From Theorem

5.1 it follows that

z ∈ {zs : s = 1, . . . ,m} iff (I − Pdm)(e · ∂zÑ(·, z)|∂ω) = 0 ,

or equivalently, if we define the angle θ(z) ∈ [0, π/2) by

cot θ(z) =
||Pdm(e · ∂zÑ(·, z)|∂ω)||L2(∂ω)

||(I − Pdm)(e · ∂zÑ(·, z)|∂ω)||L2(∂ω)

,

then we have

z ∈ {zs : s = 1, . . . ,m} iff cot θ(z) = +∞ .

On the other hand, since ΛD −Λ0 is self-adjoint and compact operator on
L2

0(∂ω) it admits, by the spectral theorem, the following spectral decomposi-
tion

ΛD − Λ0 =
+∞∑

p=1

λε
pv

ε
p (vε

p)
∗ , ||vε

p||L2(∂ω) = 1 ,

with |λε
1| ≥ |λε

2| ≥ . . . ≥ |λε
dm| ≥ . . . ≥ 0. Let P ε

p : L2
0(∂ω)→ span {vε

1, . . . , v
ε
p},

p = 1, 2, . . . , be the orthogonal projector P ε
p =

∑p
q=1 v

ε
q (vε

q)
∗. Standard argu-

ments from perturbation theory for linear operators [173] give (after appro-
priate enumeration of λε

p, p = 1, . . . , dm)

λε
p = εdλp +O(εd+1) for p = 1, 2, . . . , (5.14)

where we have set λp = 0 for p > dm, and
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P ε
p = Pdm +O(ε) for p ≥ dm , (5.15)

provided that one makes appropriate choices of eigenvectors vε
p and vp, p =

1, . . . , dm.
Now in view of (5.14) the number m of inclusions may be estimated by

looking for a gap in the set of eigenvalues of ΛD −Λ0. In order to recover the
locations zs, s = 1, . . . ,m, one can estimate, using (5.15), the cot θ(z) by

cot θp(z) =
||P ε

p (e · ∂zÑ(·, z))|∂ω)||L2(∂ω)

||(I − P ε
p )(e · ∂zÑ(·, z)|∂ω)||L2(∂ω)

.

If one plots cot θdm(z) as a function of z, we may see large values for z which
are close to the positions zs. The viability of this direct approach has been doc-
umented by several numerical examples in [64]. In particular, its good ability
to efficiently locate a high number of inclusions has been clearly demonstrated.

When comparing the different methods that have been designed for imag-
ing small inclusions, it is fair to point out that the variational method and the
sampling linear approach use “many boundary measurements”. In contrast,
the constant current projection algorithm, the quadratic algorithm, and the
least-squares algorithm only rely on “single measurements” and not surpris-
ingly, they are more limited in their abilities to effectively locate a higher
number of small inclusions.

5.6 Lipschitz-Continuous Dependence and Moments
Estimations

5.6.1 Lipschitz-Continuous Dependence

We now prove a Lipschitz-continuous dependence of the location and relative
size of two sets of inclusions on the difference in the boundary voltage poten-
tials corresponding to a fixed current distribution. This explains the practical
success of various numerical algorithms to detect the location and size of un-
known small inclusions.

Consider two arbitrary collections of inclusions

D = ∪m
s=1(ερsB + zs) and D′ = ∪m′

s=1(ερ
′
sB + z′s) ,

both satisfying (5.10). The parameter ε determines the common length scale of
the inclusions and the parameters ρs, 0 < c0 ≤ ρs ≤ C0, for some constant C0,
determine their relative size. We suppose that all the inclusions have the same
known conductivity 0 < k �= 1 < +∞. Let u and u′ denote the corresponding
voltage potentials (with fixed boundary current g ∈ L2

0(∂Ω)). It is crucial
to assume that ∇U(x) �= 0, ∀ x ∈ Ω, where U is the background solution.
Introduce H [g] = −SΩg + DΩu and H ′[g] = −SΩg + DΩu

′.
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By iterating the asymptotic formula (5.8) we arrive at the following ex-
pansions:

H [g](x) = −
m∑

s=1

d∑

|i|=1

d∑

|j|=1

(ερs)|i|+|j|+d−2

i!j!
(∂iU)(zs)∂j

zΓ (x− zs)Mij(k,B)

+ O(ε2d),

H ′[g](x) = −
m′
∑

s=1

d∑

|i|=1

d∑

|j|=1

(ερ′s)
|i|+|j|+d−2

i!j!
(∂iU)(z′s)∂

j
zΓ (x− z′s)Mij(k,B)

+ O(ε2d) .
(5.16)

The following theorem, due to Friedman and Vogelius [123], shows that for
small ε the locations of the inclusions, zs, and their relative size, ρs, depend
Lipschitz-continuous on ε−d||H [g]−H ′[g]||L∞(S) for any C2-closed surface (or
curve in IR2) S enclosing the domain Ω.

Theorem 5.6 Let S be a C2-closed surface (or curve in IR2) enclosing the
domain Ω. There exist constants 0 < ε0, δ0, and C such that if ε < ε0 and
ε−d||H [g] −H ′[g]||L∞(S) < δ0 then

(i) m = m′, and, after appropriate reordering,

(ii) |zs − z′s| + |ρs − ρ′s| ≤ C

(

ε−d||H [g] −H ′[g]||L∞(S) + ε

)

.

The constants ε0, δ0 and C depend on c0, C0, Ω, S,B, k but are otherwise in-
dependent of the two sets of inclusions.

Proof. From (5.16) we get

ε−d

(

H [g](x) −H ′[g](x)
)

=
[ m′
∑

s=1

(ρ′s)
d(∂U)(z′s)∂zΓ (x− z′s)M(k,B)

−
m∑

s=1

(ρs)d(∂U)(zs)∂zΓ (x− zs)M(k,B)
]

+O(ε) ,

for all x ∈ S. Suppose now the assertion m = m′ is not true. Then there exists
a function of the form F (x) =

∑m′

s=1 ∂zΓ (x− z′s) ·α′
s −
∑m

s=1 ∂zΓ (x− zs) ·αs,
with α′

s �= 0 and αs �= 0, such that F (x) = 0 for all x ∈ S. To see that α′
s

as well as αs are not zero we use the fact that ∇U never vanishes and that
the polarization tensor M(k,B) is invertible. Let Ω′ denote the region outside
S. From the uniqueness of a solution to ∆F = 0 in Ω′, F = 0 on S, F (x) =
O(|x|−d+1) as |x| → +∞, it follows that ∂F/∂ν = 0 on S. But F is also
harmonic in IRd \ ({zs} ∪ {z′s}). From the uniqueness of a solution to the
Cauchy problem for the Laplacian we then conclude that F ≡ 0 in IRd. This
contradicts the fact that m �= m′.
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When it comes to proving (ii) suppose for simplicity that U(x) = x1 −
(1/|∂|Ω|)

∫
∂Ω U (corresponding to the boundary current g = ν1). Then

ε−d

(

H [g](x) −H ′[g](x)
)

=
m∑

s=1

[

(ρ′s)
d∂zΓ (x− z′s)

−(ρs)d∂zΓ (x− zs)
]

(M(k,B))1 +O(ε) ,

(5.17)

for all x ∈ S, where (M(k,B))1 is the first column of the matrix M(k,B). A
simple calculation shows that, for some ρs and zs,

m∑

s=1

[

(ρ′s)
d∂zΓ (x− z′s) − (ρs)d∂zΓ (x− zs)

]

(M(k,B))1

=
m∑

s=1

[

d(ρ′s − ρs)(ρs)d−1∂zΓ (x− z′s) + ρd
s(z

′
s − zs) · ∂2

zΓ (x− zs)
]

(M(k,B))1

=
m∑

s=1

(

|zs − z′s| + |ρs − ρ′s|
)

×
m∑

s=1

[

d ∂ρs (ρs)d−1∂zΓ (x− z′s) + ρd
s∂zs · ∂2

zΓ (x− zs)
]

(M(k,B))1 ,

where

∂ρs =
(ρ′s − ρs)

∑m
s=1

(

|zs − z′s| + |ρs − ρ′s|
)

and

∂zs =
(z′s − zs)

∑m
s=1

(

|zs − z′s| + |ρs − ρ′s|
) .

Suppose the estimate (ii) is not true. Then there exist perturbations ∂ρs and
∂zs with

∑m
s=1 |∂ρs| + |∂zs| = 1, points zs (= z′s = zs), and parameters

ρs(= ρ′s = ρs) so that

G(x) =
m∑

s=1

[

d ∂ρs (ρs)d−1∂zΓ (x− zs) + ρd
s∂zs · ∂2

zΓ (x− zs)
]

(M(k,B))1 = 0

for all x ∈ S. Just as was the case with F , the function G has a vanishing
normal derivative on S and it is harmonic except at the points {zs} and {z′s}.
Therefore, by the unique continuation property of harmonic functions, G ≡ 0
and thus, ∂ρs = ∂zs = 0, s = 1, . . .m. This, however, would be a contradiction
to the fact that

∑m
s=1 |∂ρs|+ |∂zs| = 1. We therefore conclude that the desired

Lipschitz-continuous dependence estimate holds. ��
The factor ε−d in front of ||H [g] −H ′[g]||L∞(S) is best possible; it follows

immediately from (5.16) that even |zs − z′s| and |ρs − ρ′s| are of order 1 then
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||H [g] −H ′[g]||L∞(S) is of order εd. The use of the L∞-norm of H [g] −H ′[g]
on S is not essential; in fact other norms, such as the L1-norm, can be used.

In the two-dimensional case, the results in Theorem 5.6 have some sim-
ilarity to the results about the location of poles for meromorphic functions,
found in [204]. The idea is quite simple. Suppose d = 2 then (5.17) reads

ε−2

(

H [g](x) −H ′[g](x)
)

= − 1
2π

m′
∑

s=1

(ρ′s)
2 (x− z′s)
|x− z′s|2

(M(k,B))1

+
1
2π

m∑

s=1

(ρs)2
(x− z′s)
|x− z′s|2

(M(k,B))1 +O(ε) .

Identifying IR2 with C yields

ε−2

(

H [g](x) −H ′[g](x)
)

= �
( m′
∑

s=1

α′
s

x− z′s
−

m∑

s=1

αs

x− zs

)

+O(ε) ,

for all x ∈ S, where the constants αs = −(1/2π)ρ2
s((M(k,B))11+i(M(k,B))12)

and α′
s = −(1/2π)(ρ′s)2((M(k,B))11+i(M(k,B))12) are of order 1. Therefore,

m′
∑

s=1

α′
s

x− z′s
−

m∑

s=1

αs

x− zs
= ε−2

(

H [g](x) −H ′[g](x)
)

+iε−2

∫ x

a

∂

∂ν

(

H [g](y) −H ′[g](y)
)

dσ(y) +O(ε) ,

for some complex constant a ∈ S. Here
∫ x

a

∂

∂ν

(

H [g](y) −H ′[g](y)
)

dσ(y)

is the harmonic conjugate to H [g](x) −H ′[g](x) and satisfies

||
∫ x

a

∂

∂ν

(

H [g](y) −H ′[g](y)
)

dσ(y)||L∞(S) ≤ C||H [g] −H ′[g]||L∞(S) ,

for some constant C independent of ε. Since the poles {zs} and {z′s} are well
separated and the pole residues {ρs} and {ρ′s} are well bounded from zero
then it follows from Theorem 1 in [204] that (i) and (ii) in Theorem 5.6 hold.

5.6.2 Moments Estimations

Consider a collection of inclusions

D = ∪m
s=1(εBs + zs) ,
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satisfying (5.10). Our goal is to obtain upper and lower bounds on the mo-
ments of the unknown inclusions Bs. Observe that

∑d
|i|=1 ∂

iU(zs)xi is a har-
monic polynomial. Let S be a C2-closed surface (or curve in IR2) enclosing the
domain Ω. From

H [g](x)=−
m∑

s=1

d∑

|i|=1

d∑

|j|=1

ε|i|+|j|+d−2

i!j!
(∂iU)(zs)∂j

zΓ (x− zs)M s
ij +O(ε2d) on S ,

where g = ∂U/∂ν, we compute by Green’s formula
∫

S

(
∂

∂ν
H [g]U −H [g] g

)

dσ

= −
m∑

s=1

d∑

|i|=1

d∑

|j|=1

ε|i|+|j|+d−2

i!j!
∂iU(zs)M s

ij∂
jU(zs) +O(ε2d) .

Then, as a direct consequence of Theorem 3.9, the following moments
estimations hold. Note that, in general, they are only meaningful if the con-
ductivities {ks}m

s=1 and the locations {zs}m
s=1 are known.

Theorem 5.7 We have

ε2−d

∣
∣
∣
∣

∫

S

(
∂

∂ν
H [g]U −H [g] g

)

dσ

∣
∣
∣
∣

≈
m∑

s=1

|ks − 1|
ks + 1

∫

Bs

∣
∣
∣
∣
∣
∣
∇




d∑

|i|=1

ε|i|

i!
∂iU(zs)xi





∣
∣
∣
∣
∣
∣

2

dx .



Part II

Detection of Small Elastic Inclusions

H. Ammari and H. Kang: LNM 1846, pp. 103–107, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Suppose that an elastic medium occupies a bounded domain Ω in IRd with
a connected Lipschitz boundary ∂Ω. Let Cijkl , i, j, k, l = 1, . . . , d, be the
elasticity tensor of Ω, which is piecewise constant. Then by the generalized
Hooke’s law, the displacement vector u caused by the traction g applied on the
boundary ∂Ω is the solution to the following transmission problem associated
to the system of elastostatics with the traction boundary condition:






d∑

j,k,l=1

∂

∂xj

(

Cijkl
∂uk

∂xl

)

= 0 in Ω, i = 1, . . . , d ,

∂u
∂ν

∣
∣
∣
∣
∂Ω

= g .

If Ω is an isotropic elastic material and contains isotropic inclusions D =
∪m

s=1Ds, the elasticity tensor Cijkl takes the following form

Cijkl :=
(
λχ(Ω \D) +

m∑

s=1

λs χ(Ds)
)
δijδkl

+
(
µχ(Ω \D) +

m∑

s=1

µs χ(Ds)
)
(δikδjl + δilδjk) ,

where χ(D) is the characteristic function of D, and (λ, µ) and (λs, µs) are
pairs of Lamé constants of Ω \D and Ds, respectively, for s = 1, . . . ,m.

The problem we consider in this part is to detect unknown inclusions Ds,
s = 1, . . . ,m, by means of a finite number of pairs of traction-displacement
(g,u|∂Ω) measured on ∂Ω. In particular, we are interested in finding diamet-
rically small inclusions Ds, s = 1, . . . ,m. So we assume that each Ds takes
the form Ds = εBs + zs, s = 1, . . . ,m, where ε is a small number and denotes
the common magnitude of the inclusions, Bs is a bounded Lipschitz domain,
and zs indicates the location of Ds.
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Most of the existing algorithms to solve inverse problems for the Lamé
system are iterative and are then based on regularization techniques. See,
for example, [67, 118, 57, 144, 214]. Inspired by Part I, we design efficient
and robust direct (non-iterative) algorithms to reconstruct the location and
certain features of the elastic inclusions Ds.

One medical problem for which knowledge of internal elastic properties
would be useful is breast tumor detection [50, 137]. The elastic properties
are very different for cancerous and normal tissues. A variety of nonclinical
applications of our mathematical model is also possible. These include earth
imaging [141] and nondestructive evaluation of materials [109].

Inclusions of small size are believed to be the starting point of crack de-
velopment in elastic bodies.

A striking example is provided by an aircraft accident due to a fatigue
failure initiated by an inclusion in an engine component. We quote paragraphs
from the website www.irc.bham.ac.uk/theme1/plasma/production.htm, since
they describe very well one of the motivations of the present part.

“Imperfection in the metallic structure can lead to a significant reduction in

the performance of a given item, but worse still can be ’inclusion’ or ’defect’ (small

particles of other materials trapped in the metal). Metallic items normally ultimately

fail by cracking and inclusions can act as the starting points for cracks - the larger the

inclusion, the larger the crack and the quicker it will grow. In aerospace applications,

inclusions as small as 1-hundredth of a millimeter are important. To put this in

perspective an inclusion of about 20 millionth of a gramme can lead to failure in a

component a meter long.

Since the early 1980’s, a number of near air disasters have occurred caused by

engine problem traceable to the presence of inclusions. On 19 July 1989, United

Airlines Flight 232, a wide-bodied DC-10, crashed at Sioux City, Iowa, ultimately

resulting in 112 deaths (Randall, 1991). This crash was a direct consequence of a

fatigue failure initiated by the presence of a ’hard alpha’ inclusion in a titanium alloy

engine component. Ensuring the safe performance of such components is therefore of

paramount importance. However, it is not just the aerospace industry which requires

predictable long life from significantly stressed components - in both the medical and

offshore industries, the effects of component failure could be disastrous.”

The main aim of this part is to develop a method to detect the size and
location of an inclusion in an elastic body in a mathematically rigorous way.
We find a complete asymptotic formula of solutions of the linear elastic system
in terms of the size of the inclusion. This formula describes the perturbation
of the solution caused by the presence of an anomaly (inclusion) of small size.
Based on this asymptotic expansion we derive formulae to find the location
and the order of magnitude of the elastic inclusion with high accuracy. The
formulae are explicit and can be easily implemented numerically. The general
approach we will take is parallel to that in Part I except for some technical
difficulties due to the fact that we are dealing with a system, not a single
equation, and the equations inside and outside the inclusion are different.
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In the course of deriving the asymptotic formula, we introduce the concepts
of elastic moment tensors (EMT) and prove some of their basic properties.
These concepts are defined in a way analogous to the GPT’s. The first-order
EMT was introduced by Maz’ya and Nazarov [202].

The main body of this part is from [23] and [166].



6

Transmission Problem for Elastostatics

In this chapter we review some well-known results on the solvability and layer
potentials for the Lamé system, mostly from [93] and [111], and prove a rep-
resentation formula for solutions of the Lamé system which will be our main
tool in later chapters.

6.1 Layer Potentials for the Lamé System

Let D be a bounded Lipschitz domain in IRd, d = 2, 3, and (λ, µ) be the Lamé
constants for D satisfying

µ > 0 and dλ + 2µ > 0 .

See Kupradze [189]. The elastostatic system corresponding to the Lamé con-
stants λ, µ is defined by

Lλ,µu := µ∆u + (λ+ µ)∇∇ · u .

The corresponding conormal derivative ∂u/∂ν on ∂D is defined to be

∂u
∂ν

:= λ(∇ · u)N + µ(∇u + ∇uT )N on ∂D , (6.1)

where N is the outward unit normal to ∂D and the superscript T denotes the
transpose of a matrix. Let us note a simple, but important relation.

Lemma 6.1 If u ∈W 1,2(D) and Lλ,µu = 0 in D, then for all v ∈ W 1,2(D),
∫

∂D

v · ∂u
∂ν

dσ =
∫

D

λ(∇ · u)(∇ · v) +
µ

2
(∇u +∇uT ) · (∇v +∇vT ) dx , (6.2)

where for d× d matrices a = (aij) and b = (bij), a · b =
∑

ij aijbij.

H. Ammari and H. Kang: LNM 1846, pp. 109–127, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Proof. By the definition (6.1) of the conormal derivative, we get
∫

∂D

v · ∂u
∂ν

dσ =
∫

∂D

λ(∇ · u)v ·N + µv · (∇u + ∇uT )N dσ

=
∫

D

λ∇ · ((∇ · u)v) + µ∇ · ((∇u + ∇uT )v) dx .

Since

∇ ·
(

(∇u +∇uT )v
)

= ∇(∇ · u) · v +∆u · v +
1
2
(∇u +∇uT ) · (∇v +∇vT ) ,

we obtain (6.2) and the proof is complete. ��

We give now a fundamental solution to the Lamé system Lλ,µ in IRd.

Lemma 6.2 A fundamental solution Γ = (Γij)d
i,j=1 to the Lamé system Lλ,µ

is given by

Γij(x) :=






− A

4π
δij
|x| −

B

4π
xixj

|x|3 if d = 3 ,

A

2π
δij log |x| − B

2π
xixj

|x|2 if d = 2 ,
x �= 0,

where

A =
1
2

(
1
µ

+
1

2µ+ λ

)

and B =
1
2

(
1
µ
− 1

2µ+ λ

)

. (6.3)

The function Γ is known as the Kelvin matrix of fundamental solutions.

Proof. We seek a solution Γ = (Γij)d
i,j=1 of

µ∆Γ + (λ+ µ)∇∇ · Γ = δ0Id in IRd , (6.4)

where Id is the d× d identity matrix and δ0 is the Dirac function at 0. Taking
the divergence of (6.4), we have

(λ+ 2µ)∆(∇ · Γ) = ∇δ0 .

Thus by Lemma 2.2

∇ · Γ =
1

λ+ 2µ
∇Γ ,

where Γ is given by (2.4). Inserting this into (6.4) gives

µ∆Γ = δ0 Id − λ+ µ

λ+ 2µ
∇∇Γ .

Hence it follows that
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Γij(x) :=






− A

4π
δij
|x| −

B

4π
xixj

|x|3 if d = 3 ,

A

2π
δij log |x| − B

2π
xixj

|x|2 if d = 2 ,
x �= 0,

modulo constants, where A and B are given by (6.3). ��
The single and double layer potentials of the density function ϕ on D

associated with the Lamé parameters (λ, µ) are defined by

SDϕ(x) :=
∫

∂D

Γ(x − y)ϕ(y) dσ(y) , x ∈ IRd , (6.5)

DDϕ(x) :=
∫

∂D

∂

∂νy
Γ(x − y)ϕ(y) dσ(y) , x ∈ IRd \ ∂D , (6.6)

where ∂/∂ν denotes the conormal derivative defined in (6.1). Thus, for m =
1, . . . , d,

(DDϕ(x))m =
∫

∂D

λ
∂Γmi

∂yi
(x − y)ϕ(y) ·N(y)

+ µ
(∂Γmi

∂yj
+
∂Γmj

∂yi

)
(x− y)Ni(y)ϕj(y) dσ(y) .

Here we used the Einstein convention for summation notation. As an immedi-
ate consequence of (6.2) we obtain the following lemma which can be proved
in the same way as the Green’s representation (2.7) of harmonic functions.

Lemma 6.3 If u ∈ W 1,2(D) and Lλ,µu = 0 in D, then

u(x) = DD(u|∂D)(x) − SD

(
∂u
∂ν

∣
∣
∂D

)

(x) , x ∈ D , (6.7)

and

DD(u|∂D)(x) − SD

(
∂u
∂ν

∣
∣
∂D

)

(x) = 0 , x ∈ IRd \D . (6.8)

As before, let u|+ and u|− denote the limits from outside D and inside D,
respectively.

The following theorems are due to Dahlberg, Kenig, and Verchota [93].

Theorem 6.4 (Jump formula, [93]) Let D be a bounded Lipschitz domain
in IRd, d = 2 or 3. For ϕ ∈ L2(∂D)

DDϕ|± = (∓1
2
I + KD)ϕ a.e. on ∂D , (6.9)

∂

∂ν
SDϕ

∣
∣
± = (±1

2
I + K∗

D)ϕ a.e. on ∂D , (6.10)

where KD is defined by
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KDϕ(x) := p.v.
∫

∂D

∂

∂νy
Γ(x− y)ϕ(y) dσ(y) a.e. x ∈ ∂D ,

and K∗
D is the adjoint operator of KD on L2(∂D), that is,

K∗
Dϕ(x) := p.v.

∫

∂D

∂

∂νx
Γ(x− y)ϕ(y) dσ(y) a.e. x ∈ ∂D .

It must be emphasized that, in contrast to the corresponding singular inte-
gral operators defined in (2.14) and (2.15) that arise when studying Laplace’s
equation, the singular integral operators KD and K∗

D are not compact, even
on bounded C∞-domains [93].

Let Ψ be the vector space of all linear solutions of the equation Lλ,µu = 0
and ∂u/∂ν = 0 on ∂D, or alternatively,

Ψ :=
{

ψ : ∂iψj + ∂jψi = 0, 1 ≤ i, j ≤ d

}

.

Observe now that the space Ψ is defined independently of the Lamé constants
λ, µ and its dimension is 3 if d = 2 and 6 if d = 3. Define

L2
Ψ (∂D) :=

{

f ∈ L2(∂D) :
∫

∂D

f · ψ dσ = 0 for all ψ ∈ Ψ

}

.

In particular, since Ψ contains constant functions, we get
∫

∂D

f dσ = 0

for any f ∈ L2
Ψ (∂D). The following fact, which immediately follows from (6.2),

is useful in later sections.

If u ∈W 1, 3
2 (D) satisfies Lλ,µu = 0 in D, then

∂u
∂ν

∣
∣
∣
∣
∂D

∈ L2
Ψ (∂D) . (6.11)

One of fundamental results in the theory of linear elasticity using layer
potentials is the following invertibility result.

Theorem 6.5 ([93]) The operator KD is bounded on L2(∂D), and −(1/2) I+
K∗

D and (1/2) I + K∗
D are invertible on L2

Ψ (∂D) and L2(∂D), respectively.

As a consequence of (6.10) and Theorem 6.5, we obtain the following result.

Corollary 6.6 ([93]) For a given g ∈ L2
Ψ (∂D), the function u ∈ W 1,2(D)

defined by

u(x) := SD(−1
2
I + K∗

D)−1g (6.12)

is a solution to the problem





Lλ,µu = 0 in D ,

∂u
∂ν

|∂D = g , (u
∣
∣
∂D

∈ L2
Ψ (∂D)) .

(6.13)
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If ψ ∈ Ψ and x ∈ IRd \D, it follows from (6.2) that DDψ(x) = 0. Hence
we obtain from (6.9) that (−(1/2) I + KD)ψ = 0. Since the dimension of the
orthogonal complement of the range of the operator −(1/2) I + K∗

D is less
than 3 if d = 2 and 6 if d = 3, which is the dimension of the space Ψ , we have
the following corollary.

Corollary 6.7 The null space of −(1/2) I + KD on L2(∂D) is Ψ .

The following formulation of Korn’s inequality will be of use to us. See
Nečas [223] and Ciarlet [85] (Theorem 6.3.4).

Lemma 6.8 Let D be a bounded Lipschitz domain in IRd. Consider functions
u ∈ W 1,2(D) so that

∫

D

(

u · ψ + ∇u · ∇ψ
)

= 0 for all ψ ∈ Ψ .

Then there is a constant C depending only on the Lipschitz character of D so
that ∫

D

(

|u|2 + |∇u|2
)

dx ≤ C

∫

D

|∇u + ∇uT |2 dx . (6.14)

6.2 Kelvin Matrix Under Unitary Transforms

Unlike the fundamental solution to the Laplacian, the fundamental solution
Γ to Lλ,µ is not invariant under unitary transforms. In this section we find
formulae for Γ and the single layer potential under unitary transforms.

Lemma 6.9 Let R be a unitary transform on IRd. Then,

(i) Lλ,µ(R−1(u ◦R)) = R−1(Lλ,µu) ◦R ,

(ii) (
∂u
∂ν

) ◦R = R
∂

∂ν

(

R−1(u ◦R)
)

.

Proof. Since, for a vector u and a scalar function f ,

(∇ · u) ◦R = ∇ ·
(

R−1(u ◦R)
)

,

R−1(∇f) ◦R = ∇(f ◦R) ,

we have that

Lλ,µ

(

R−1(u ◦R)
)

= µ∆(R−1(u ◦R)) + (λ+ µ)∇∇ · (R−1(u ◦R))

= µR−1(∆(u ◦R)) + (λ+ µ)∇((∇ · u) ◦R))

= µR−1((∆u) ◦R)) + (λ+ µ)R−1(∇∇ · u) ◦R

= R−1(Lλ,µu) ◦R ,
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which proves (i).
To prove (ii), note first that if N1 and N2 are the unit normals to ∂D and

∂R(D), then N2(R(x)) = R(N1(x)) for x ∈ ∂D. Therefore, we have

(
∂u
∂ν

) ◦R = λ(∇ · u ◦R)N ◦R+ µ((∇u) ◦R+ (∇u)T ◦R)N ◦R

= λ∇ · (R−1(u ◦R))RN + µR(R−1(∇u) ◦R+R−1(∇u)T ◦R)RN

= λ∇ · (R−1(u ◦R))RN + µR(∇(u ◦R)R+ (∇(u ◦R)TR)N

= λ∇ · (R−1(u ◦R))RN + µR(∇(R−1(u ◦R)) + (∇(R−1(u ◦R))T )N

= R
∂

∂ν
(R−1(u ◦R)) ,

and thus (ii) is proved. ��

Lemma 6.10 Suppose that Lλ,µu = 0 in IRd. If, in addition, u is bounded for
d = 2 and behaves like O(|x|−1) as |x| → ∞ for d = 3, and ∇u = O(|x|1−d)
as |x| → ∞, then u = constant if d = 2 and u = 0 if d = 3.

Proof. Let Br be a ball of radius r centered at 0. Then by (6.7),

u(x) = DBr (u|∂Br)(x) − SBr

(
∂u
∂ν

∣
∣
∂Br

)

(x) , x ∈ Br .

By (6.11), ∂u/∂ν ∈ L2
Ψ (∂Br), which, in particular, shows that

∫

∂Br

∂u
∂ν

dσ = 0 .

Thus we have
∇u(x) = O(

1
r
) as r → +∞ ,

provided that x is in a bounded set. This immediately implies that u is con-
stant and ends the proof. ��

Lemma 6.11 (Rotation Formula)

Γ(R(x)) = RΓ(x)R−1, x ∈ IRd. (6.15)

Proof. It follows from Lemma 6.9 (i) that

Lλ,µ

(
R−1(Γ ◦R)

)
(x) = R−1(Lλ,µΓ)(R(x)) = δ0(R(x))R−1 = δ0(x)R−1 .

Consequently,

Lλ,µ

(
R−1(Γ ◦R) − ΓR−1

)
= 0 in IRd .
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Observe that R−1(Γ◦R)−ΓR−1 is bounded if d = 2 and behaves like O(|x|−1)
as |x| → ∞ if d = 3. Moreover,

∇
(
R−1(Γ ◦R) − ΓR−1

)
(x) = O(|x|1−d) as |x| → ∞ .

It then follows from Lemma 6.10 that

R−1(Γ ◦R) − ΓR−1 = constant,

which is obviously zero. ��
As a consequence of (6.15) we obtain the following rotation formula for

the single layer potential.

Lemma 6.12 Let D̂ be a bounded domain in IRd and D = R(D̂). Then for
any vector potential ϕ ∈ L2(∂D), we have

(SDϕ)(R(x)) = RSD̂(R−1(ϕ ◦R))(x) , (6.16)
∂(SDϕ)
∂ν

(R(x)) = R
∂

∂ν
SD̂(R−1(ϕ ◦R))(x) . (6.17)

Proof. Using (6.15) we compute

(SDϕ)(R(x)) =
∫

∂D

Γ(R(x) − y)ϕ(y) dσ(y)

=
∫

∂D̂

Γ(R(x) −R(y))ϕ(R(y)) dσ(y)

= R

∫

∂D̂

Γ(x − y)R−1ϕ(R(y)) dσ(y)

= RSD̂(R−1(ϕ ◦R))(x) ,

which proves (6.16).
Applying Lemma 6.9 (ii), we arrive at

∂

∂ν
(SDϕ)(R(x)) = R

∂

∂ν

(

R−1(SDϕ) ◦R
)

(x) .

Then (6.17) follows from (6.16) and the above identity. This completes the
proof. ��

6.3 Transmission Problem

We suppose that the elastic medium Ω contains a single inclusion D which is
also a bounded Lipschitz domain. Let the constants (λ, µ) denote the back-
ground Lamé coefficients, that are the elastic parameters in the absence of
any inclusions. Suppose that D has the pair of Lamé constants (λ̃, µ̃) which is
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different from that of the background elastic body, (λ, µ). It is always assumed
that

µ > 0, dλ+ 2µ > 0, µ̃ > 0 and dλ̃+ 2µ̃ > 0 . (6.18)

We also assume that

(λ− λ̃)(µ− µ̃) ≥ 0,
(

(λ− λ̃)2 + (µ− µ̃)2 �= 0
)

.

We consider the transmission problem





d∑

j,k,l=1

∂

∂xj

(

Cijkl
∂uk

∂xl

)

= 0 in Ω, i = 1, . . . , d ,

∂u
∂ν

∣
∣
∣
∣
∂Ω

= g ,

(6.19)

where the elasticity tensor is given by

Cijkl :=
(
λχ(Ω \D) + λ̃ χ(D)

)
δijδkl

+
(
µχ(Ω \D) + µ̃ χ(D)

)
(δikδjl + δilδjk) .

(6.20)

In order to ensure existence and uniqueness of the solution to (6.19), we
assume that g ∈ L2

Ψ (∂Ω) and seek for a solution u ∈ W 1,2(Ω) such that
u|∂Ω ∈ L2

Ψ (∂Ω). The problem (6.19) is understood in a weak sense, namely,
for any ϕ ∈ W 1,2(Ω) the following equality holds:

d∑

i,j,k,l=1

∫

Ω

Cijkl
∂uk

∂xl

∂ϕi

∂xj
dx =

∫

∂Ω

g · ϕ dσ .

Let Lλ̃,µ̃ and ∂/∂ν̃ be the Lamé system and the conormal derivative asso-

ciated with (λ̃, µ̃), respectively. Then for any ϕ ∈ C∞
0 (Ω), we compute

0 =
d∑

i,j,k,l=1

∫

Ω

Cijkl
∂uk

∂xl

∂ϕi

∂xj
dx

=
∫

Ω\D

λ(∇ · u)(∇ ·ϕ) +
µ

2
(∇u + ∇uT ) · (∇ϕ+ ∇ϕT ) dx

+
∫

D

λ̃(∇ · u)(∇ · ϕ) +
µ̃

2
(∇u + ∇uT ) · (∇ϕ+ ∇ϕT ) dx

= −
∫

Ω\D

Lλ,µu · ϕ dx−
∫

∂D

∂u
∂ν

· ϕ dσ −
∫

D

Lλ̃,µ̃u · ϕ dx+
∫

∂D

∂u
∂ν̃

·ϕ dσ ,

where the last equality follows from (6.2). Thus (6.19) is equivalent to the
following problem:
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




Lλ,µu = 0 in Ω \D ,

Lλ̃,µ̃u = 0 in D ,

u
∣
∣
− = u

∣
∣
+

on ∂D ,

∂u
∂ν̃

∣
∣
∣
∣
−

=
∂u
∂ν

∣
∣
∣
∣
+

on ∂D ,

∂u
∂ν

∣
∣
∂Ω

= g ,
(

u|∂Ω ∈ L2
Ψ (∂Ω)

)

.

(6.21)

We denote by SD and S̃D the single layer potentials on ∂D corresponding
to the Lamé constants (λ, µ) and (λ̃, µ̃), respectively.

We use the following solvability theorem due to Escauriaza and Seo (The-
orem 4, [111]).

Theorem 6.13 Suppose that (λ − λ̃)(µ − µ̃) ≥ 0 and 0 < λ̃, µ̃ < ∞. For
any given (F,G) ∈ W 2

1 (∂D) × L2(∂D), there exists a unique pair (f ,g) ∈
L2(∂D) × L2(∂D) such that






S̃Df
∣
∣
− − SDg

∣
∣
+

= F on ∂D ,

∂

∂ν̃
S̃Df

∣
∣
∣
∣
−
− ∂

∂ν
SDg

∣
∣
∣
∣
+

= G on ∂D ,
(6.22)

and there exists a constant C depending only on λ, µ, λ̃, µ̃, and the Lipschitz
character of D such that

‖f‖L2(∂D) + ‖g‖L2(∂D) ≤ C

(

‖F‖W 2
1 (∂D) + ‖G‖L2(∂D)

)

. (6.23)

Moreover, if G ∈ L2
Ψ (∂D), then g ∈ L2

Ψ (∂D).

Proof. The unique solvability of the integral equation (6.22) was proved
in [111]. By (6.11), ∂S̃Df/∂ν̃|− ∈ L2

Ψ (∂D). Thus if G ∈ L2
Ψ (∂D), then

∂SDg/∂ν|+ ∈ L2
Ψ(∂D). Since

g =
∂

∂ν
SDg|+ − ∂

∂ν
SDg|− ,

by (6.10) and ∂SDg/∂ν|− ∈ L2
Ψ (∂D), we conclude that g ∈ L2

Ψ (∂D). ��

Lemma 6.14 Let ϕ ∈ Ψ . If the pair (f ,g) ∈ L2(∂D)×L2
Ψ (∂D) is the solution

of 




S̃Df
∣
∣
− − SDg

∣
∣
+

= ϕ|∂D ,

∂

∂ν̃
S̃Df

∣
∣
∣
∣
−
− ∂

∂ν
SDg

∣
∣
∣
∣
+

= 0 ,
(6.24)

then g = 0.
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Proof. Define u by

u(x) :=

{
SDg(x) , x ∈ IRd \D ,

S̃Df(x) −ϕ(x) , x ∈ D .

Since g ∈ L2
Ψ (∂D), then

∫
∂D

g dσ = 0, and hence

SDg(x) = O(|x|1−d) as |x| → ∞ .

Therefore u is the unique solution of





Lλ,µu = 0 in IRd \D ,

Lλ̃,µ̃u = 0 in D ,

u|+ = u|− on ∂D ,

∂u
∂ν

∣
∣
+

=
∂u
∂ν̃

∣
∣
− on ∂D ,

u(x) = O(|x|1−d) as |x| → ∞ .

(6.25)

Since the trivial solution is the unique solution to (6.25), we see that SDg(x) =
0 for x ∈ IRd \ D. It then follows that Lλ,µSDg(x) = 0 for x ∈ D and
SDg(x) = 0 for x ∈ ∂D. Thus SDg(x) = 0 for x ∈ D. Using the fact that

g =
∂(SDg)
∂ν

|+ − ∂(SDg)
∂ν

|− ,

we conclude that g = 0. ��

We now prove a representation theorem for the solution of the transmission
problem (6.21) which will be the main ingredient in deriving the asymptotic
expansions in Chap. 8.

Theorem 6.15 There exists a unique pair (ϕ,ψ) ∈ L2(∂D) × L2
Ψ (∂D) such

that the solution u of (6.21) is represented by

u(x) =

{
H(x) + SDψ(x) , x ∈ Ω \D ,

S̃Dϕ(x) , x ∈ D ,
(6.26)

where H is defined by

H(x) = DΩ(u|∂Ω)(x) − SΩ(g)(x) , x ∈ IRd \ ∂Ω . (6.27)

In fact, the pair (ϕ,ψ) is the unique solution in L2(∂D) × L2
Ψ (∂D) of






S̃Dϕ
∣
∣
− − SDψ

∣
∣
+

= H|∂D on ∂D ,

∂

∂ν̃
S̃Dϕ

∣
∣
∣
∣
−
− ∂

∂ν
SDψ

∣
∣
∣
∣
+

=
∂H
∂ν

∣
∣
∂D

on ∂D .
(6.28)
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There exists C such that

‖ϕ‖L2(∂D) + ‖ψ‖L2(∂D) ≤ C‖H‖W 2
1 (∂D) . (6.29)

For each integer n there exists Cn depending only on c0 and λ, µ (not on λ̃, µ̃)
such that

‖H‖Cn(D) ≤ Cn‖g‖L2(∂Ω) . (6.30)

Moreover,
H(x) = −SDψ(x) , x ∈ IRd \Ω . (6.31)

Proof. Let ϕ and ψ be the unique solutions of (6.28). Then clearly u defined
by (6.26) satisfies the transmission condition (the third and fourth conditions
in (6.21)). By (6.11), ∂H/∂ν|∂D ∈ L2

Ψ(∂D). Thus by Theorem 6.13, ψ ∈
L2

Ψ (∂D).
We now prove that ∂u/∂ν|∂Ω = g. To this end we consider the following

two phases transmission problem:





Lλ,µu = 0 in (Ω \D) ∪ (IRd \Ω) ,

Lλ̃,µ̃u = 0 in D ,

u|− = u|+ and
∂u
∂ν̃

∣
∣
− =

∂u
∂ν

∣
∣
+

on ∂D ,

u|− − u|+ = f and
∂u
∂ν̃

∣
∣
− − ∂u

∂ν

∣
∣
+

= g on ∂Ω ,

|x||u(x)| + |x|2|∇u(x)| ≤ C as |x| → ∞ ,

(6.32)

where f = u|∂Ω . If v ∈ W 1,2(Ω) is the solution of (6.21), then U1, defined by

U1(x) :=

{
v(x) , x ∈ Ω ,

0 , x ∈ IRd \Ω ,

is a solution of (6.32). On the other hand, it can be easily seen from the jump
relations of the layer potentials, (6.9) and (6.10), that U2 defined by

U2(x) =

{
−SΩ(g)(x) + DΩ(u|∂Ω)(x) + SDψ(x) , x ∈ IRd \ (D ∪ ∂Ω) ,

S̃Dϕ(x) , x ∈ D ,

is also a solution of (6.32). Thus U1−U2 is a solution of (6.32) with f = 0 and
g = 0. Moreover, U1 − U2 ∈ W 1,2(IRd) and therefore, U1 − U2 = 0, which
implies, in particular, that ∂u/∂ν|∂Ω = g. Indeed, U2(x) = 0 for x ∈ IRd \Ω
and hence (6.31) has been verified.

Now it remains to prove (6.30). Let

Ω′ :=
{

x ∈ Ω : dist(x, ∂Ω) > c0

}
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so that D is compactly contained in Ω′. Then by an identity of Rellich type
available for general constant coefficient systems (see Lemma 1.14 (i) of [93])
there exists a constant C such that

‖∇u‖L2(∂Ω) ≤ C

(

‖g‖L2(∂Ω) + ‖∇u‖L2(Ω\Ω′)

)

. (6.33)

It then follows from the Korn’s inequality (6.14) and the divergence theorem
that

‖∇u‖L2(Ω\Ω′) ≤ C‖∇u + ∇uT ‖L2(Ω\D)

≤ C

∫

Ω

(

λχ(Ω \D) + λ̃ χ(D)
)

|∇ · u|2

+
1
2

(

µχ(Ω \D) + µ̃ χ(D)
)

|∇u + ∇uT |2dx

≤ C

∫

∂Ω

u · ∂u
∂ν

dσ ,

where the constants, generically denoted by C, do not depend on λ̃, µ̃. Further,
by (6.33) and the Poincaré inequality (2.1),

‖u‖L2(∂Ω) ≤ C‖∇u‖L2(∂Ω)

≤ C
(
‖g‖L2(∂Ω) + ‖g‖L2(∂Ω)‖u‖L2(∂Ω)

)
,

and hence
‖u‖L2(∂Ω) ≤ C‖g‖L2(∂Ω) . (6.34)

Clearly the desired estimate (6.30) immediately follows from the definition of
H and (6.34) and the proof is complete. ��

We now derive a representation for u in terms of the background solution.
Let N(x, y) be the Neumann function for Lλ,µ in Ω corresponding to a Dirac
mass at y. That is, N is the solution to






Lλ,µN(x, y) = −δy(x)Id in Ω,
∂N
∂ν

∣
∣
∣
∣
∂Ω

= − 1
|∂Ω|Id ,

N(·, y) ∈ L2
Ψ (∂Ω) for each y ∈ Ω ,

(6.35)

where the differentiations act on the x-variables, and Id is the d× d identity
matrix.

For g ∈ L2
Ψ (∂Ω), define

U(x) :=
∫

∂Ω

N(x, y)g(y) dσ(y) , x ∈ Ω . (6.36)
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Then U is the solution to (6.13) with D replaced by Ω. On the other hand,
by (6.12), the solution to (6.13) is given by

U(x) := SΩ

(

− 1
2
I + K∗

Ω

)−1

g(x) .

Thus we have
∫

∂Ω

N(x, y)g(y) dσ(y) =
∫

∂Ω

Γ(x− y)(−1
2
I + K∗

Ω)−1g(y) dσ(y) ,

or equivalently,
∫

∂Ω

N(x, y)(−1
2
I + K∗

Ω)g(y) dσ(y) =
∫

∂Ω

Γ(x− y)g(y) dσ(y) , x ∈ Ω ,

for any g ∈ L2
Ψ (∂Ω). Consequently, it follows that, for any simply connected

Lipschitz domain D compactly contained in Ω and for any g ∈ L2
Ψ (∂D), the

following identity holds:
∫

∂D

(−1
2
I + KΩ)(Ny)(x)g(y) dσ(y) =

∫

∂D

Γy(x)g(y) dσ(y) ,

for all x ∈ ∂Ω. The following lemma has been proved.

Lemma 6.16 For y ∈ Ω and x ∈ ∂Ω, let Γy(x) := Γ(x − y) and Ny(x) :=
N(x, y). Then

(

− 1
2
I + KΩ

)

(Ny)(x) = Γy(x) modulo Ψ . (6.37)

We fix one more notation. Let

NDf(x) :=
∫

∂D

N(x, y)f (y) dσ(y) , x ∈ Ω .

Theorem 6.17 Let u be the solution to (6.21) and U the background solu-
tion, i.e., the solution to (6.13). Then the following holds:

u(x) = U(x) −NDψ(x), x ∈ ∂Ω , (6.38)

where ψ is defined by (6.28).

Proof. By substituting (6.26) into the equation (6.27), we obtain

H(x) = −SΩ(g)(x) + DΩ

(

H|∂Ω + (SDψ)|∂Ω

)

(x) , x ∈ Ω .

It then follows from (6.9) that
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(
1
2
I −KΩ)(H|∂Ω) = −(SΩg)|∂Ω + (

1
2
I + KΩ)((SDψ)|∂Ω) on ∂Ω . (6.39)

Since U(x) = −SΩ(g)(x) + DΩ(U|∂Ω)(x) for all x ∈ Ω, we have

(
1
2
I −KΩ)(U|∂Ω) = −(SΩg)|∂Ω . (6.40)

By Theorem 6.13, it follows from (6.37) that

(−1
2
I + KΩ)((NDψ)|∂Ω)(x) = (SDψ)(x) , x ∈ ∂Ω , (6.41)

since ψ ∈ L2
Ψ (∂D). From (6.39), (6.40), and (6.41), we conclude that

(
1
2
I −KΩ)

(
H|∂Ω − U|∂Ω + (

1
2
I + KΩ)((NDψ)|∂Ω)

)
= 0 on ∂Ω ,

and hence, by Corollary 6.7, we obtain that

H|∂Ω − U|∂Ω + (
1
2
I + KΩ)((NDψ)|∂Ω) ∈ Ψ .

Note that

(
1
2
I + KΩ)((NDψ)|∂Ω) = (NDψ)|∂Ω + (SDψ)|∂Ω ,

which comes from (6.37). Thus we see from (6.26) that

u|∂Ω = U|∂Ω − (NDψ)|∂Ω modulo Ψ . (6.42)

Since all the functions entering in (6.42) belong to L2
Ψ (∂Ω), we have (6.38).

This completes the proof. ��
We have a similar representation for solutions of the Dirichlet problem. Let

G(x, y) be the Green’s function for the Dirichlet problem, i.e., the solution to
{
Lλ,µG(x, y) = −δy(x)Id in Ω ,

G(x, y) = 0 , x ∈ ∂Ω for each y ∈ ∂Ω .

Then, the function V, for f ∈W 2
1
2
(∂Ω), defined by

V(x) := −
∫

∂Ω

∂

∂νy
G(x, y)f (y) dσ(y) ,

is the solution of the problem
{
Lλ,µV = 0 in Ω ,

V|∂Ω = f .

We have the following theorem.
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Theorem 6.18 We have

(
1
2
I + K∗

Ω)−1(
∂

∂ν
Γz)(x) =

∂

∂ν
Gz(x) , x ∈ ∂Ω , z ∈ Ω .

Moreover, let u be the solution of (6.21) with the Neumann condition on ∂Ω
replaced by the Dirichlet condition u|∂Ω = f ∈ W 2

1
2
(∂Ω). Then the following

identity holds:

∂u
∂ν

(x) =
∂V
∂ν

(x) −GDψ(x) , x ∈ ∂Ω ,

where ψ is defined in (6.26) and

GDψ(x) :=
∫

∂D

∂

∂ν
G(x, y)ψ(y) dσ(y) .

Theorem 6.18 can be proved in the same way as Theorem 6.17. In fact, it
is simpler because of the solvability of the Dirichlet problem, or equivalently,
the invertibility of (1/2) I + K∗

Ω on L2(∂Ω). So we omit the proof.

6.4 Complex Representation of Displacement Vectors

This section is devoted to a representation of the solution to (6.19) by a pair of
holomorphic functions in the two-dimensional case. The results of this section
will be used to compute the elastic moment tensors in Chap. 7.

The following theorem is from [216]. We include a proof of the theorem
for the readers’ sake.

Theorem 6.19 Suppose that Ω is a simply connected domain in IR2 (bounded
or unbounded) with the Lamé constants λ, µ and let u = (u, v) ∈ W 1, 3

2 (Ω) be
a solution of Lλ,µu = 0 in Ω. Then there are holomorphic functions ϕ and ψ
in Ω such that

2µ(u+ iv)(z) = κϕ(z)− zϕ′(z)−ψ(z) , κ =
λ+ 3µ
λ+ µ

, z = x+ iy . (6.43)

Moreover, the conormal derivative ∂u/∂ν is represented as
((

∂u
∂ν

)

1

+ i

(
∂u
∂ν

)

2

)

dσ = −i∂
[

ϕ(z) + zϕ′(z) + ψ(z)
]

, (6.44)

where dσ is the line element of ∂Ω and ∂ = (∂/∂x) dx+ (∂/∂y) dy. Here ∂Ω
is positively oriented.

Proof. Let θ := ∇ · u and
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X := λθ + 2µ
∂u

∂x
, Y := λθ + 2µ

∂v

∂y
, Z := µ

(
∂v

∂x
+
∂u

∂y

)
1 .

Then we can see by elementary calculation that the equation Lλ,µu = 0 is
equivalent to

∂X

∂x
+
∂Z

∂y
= 0 and

∂Z

∂x
+
∂Y

∂y
= 0 . (6.45)

Thus there are two functions A and B such that

∇B = (−Z,X) and ∇A = (Y,−Z) .

In particular, ∂A/∂y = ∂B/∂x and hence there is a function2 U such that
∇U = (A,B). Thus,

X =
∂2U

∂y2
, Y =

∂2U

∂x2
, Z = − ∂2U

∂x∂y
. (6.46)

By taking the x-derivative of the first component of Lλ,µu and the y-derivative
of the second, we can see that

∂

∂x
(∆u) +

∂

∂y
(∆v) = 0 .

It then follows that

∆(X + Y ) = 2(λ+ µ)
[
∂

∂x
(∆u) +

∂

∂y
(∆v)

]

= 0 .

Thus U is biharmonic, namely, ∆∆U = 0. In short, we proved that there is a
biharmonic function U such that

λθ + 2µ
∂u

∂x
=
∂2U

∂y2
, λθ + 2µ

∂v

∂y
=
∂2U

∂x2
, µ

(
∂v

∂x
+
∂u

∂y

)

= − ∂2U

∂x∂y
. (6.47)

We claim that there exist two holomorphic functions in Ω, ϕ and f , such
that

2U(z) = z̄ϕ(z) + zϕ(z) + f(z) + f(z) , z ∈ Ω . (6.48)

In fact, let P := ∆U . Then P is harmonic in Ω. Let Q be a harmonic conjugate
of P so that P + iQ is holomorphic in Ω. Such a function exists since Ω is
simply connected. Let ϕ = p + iq be a holomorphic function in Ω so that
4ϕ′(z) = P (z) + iQ(z). Then,

∂p

∂x
=

1
4
P ,

∂p

∂y
= −1

4
Q . (6.49)

Then it is easy to see that
1 These notations are slightly different from those of [216].
2 This function U is called the stress function or the Airy function.
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∆(U −�(z̄ϕ)) = P −�ϕ′(z) = 0 .

Therefore, there exists a function f holomorphic in Ω such that

U −�(z̄ϕ) = �f(z) .

Thus we get (6.48).
Adding the first two equations in (6.47), we get 2(λ+ µ)θ = ∆U = P . It

then follows from the first equation in (6.47) and (6.49) that

2µ
∂u

∂x
= −∂

2U

∂x2
+

2(λ+ 2µ)
λ+ µ

∂p

∂x
.

Likewise, we obtain

2µ
∂v

∂y
= −∂

2U

∂y2
+

2(λ+ 2µ)
λ+ µ

∂q

∂y
,

and therefore

2µu = −∂U
∂x

+
2(λ+ 2µ)
λ+ µ

p+ f1(y) ,

2µv = −∂U
∂y

+
2(λ+ 2µ)
λ+ µ

q + f2(x) .

Substitute these equations into the third equation in (6.47). Then by the
Cauchy–Riemann equation ∂p/∂y = −∂q/∂x, we get

f ′
1(y) + f ′

2(x) = 0 ,

which implies that

f1(y) = ay + b , f2(x) = −ax+ c ,

for some constants a, b, c. Thus we obtain

2µ(u+ iv)(x, y) = −∂U
∂x

− i
∂U

∂y
+

2(λ+ 2µ)
λ+ µ

(p+ iq) + a(y − ix) + b+ ic .

It then follows from (6.48) that

2µ(u+ iv)(x, y) =
λ+ 3µ
λ+ µ

ϕ(z) − zϕ(z) + ψ′(z) − aiz + b+ ic ,

where ψ(z) = f ′(z). By adding constants to ϕ and ψ to define new ϕ and ψ,
we get (6.43).

To prove (6.44) we first observe that

∂u
∂ν

=
(

XN1 + ZN2, ZN1 + Y N2

)

,
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where N = (N1, N2). Since (−N2, N1) is positively oriented tangential vector
field on ∂Ω, we get

−N2ds = dx, N1ds = dy . (6.50)

It then follows from (6.46) that
((

∂u
∂ν

)

1

+ i

(
∂u
∂ν

)

2

)

dσ =
(
∂2U

∂y2
dy +

∂2U

∂x∂y
dx

)

− i

(
∂2U

∂x∂y
dy +

∂2U

∂x2
dx

)

= ∂

(
∂U

∂y
− i

∂U

∂x

)

.

Now (6.44) follows from (6.48). This completes the proof. ��

We now prove that a similar theorem holds for the solution to the problem
(6.21).

Theorem 6.20 Suppose d = 2. Let u = (u, v) be the solution of (6.21) and let
ue := u|C\D and ui := u|D. Then there are functions ϕe and ψe holomorphic
in Ω \D and ϕi and ψi holomorphic in D such that

2µ(ue + ive)(z) = κϕe(z) − zϕ′
e(z) − ψe(z) , z ∈ C \D , (6.51)

2µ̃(ui + ivi)(z) = κ̃ϕi(z) − zϕ′
i(z) − ψi(z) , z ∈ D , (6.52)

where

κ =
λ+ 3µ
λ+ µ

, κ̃ =
λ̃+ 3µ̃

λ̃+ µ̃
.

Moreover, the following holds on ∂D:

1
2µ

(

κϕe(z) − zϕ′
e(z) − ψe(z)

)

=
1
2µ̃

(

κ̃ϕi(z) − zϕ′
i(z) − ψi(z)

)

, (6.53)

ϕe(z) + zϕ′
e(z) + ψe(z) = ϕi(z) + zϕ′

i(z) + ψi(z) + c , (6.54)

where c is a constant.

Proof. By Theorem 6.15, there exists a unique pair (ϕ,ψ) ∈ L2(∂D) ×
L2

Ψ (∂D) such that

ue(x) = H(x) + SDψ(x) , x ∈ Ω \D ,

ui(x) = S̃Dϕ(x) , x ∈ D .

Since Lλ,µH = 0 in Ω and Lλ̃,µ̃S̃Dϕ = 0 in D, by Theorem 6.19, H and

S̃Dϕ have the desired representation by holomorphic functions. So, in order
to prove (6.51), it suffices to show that there are functions f and g holomorphic
in Ω \D such that
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2µ
[

(SDψ)1 + i(SDψ)2

]

(z) = κf(z) − zf ′(z) − g(z) , z ∈ Ω \D . (6.55)

Observe that for i = 1, 2,

(SDψ)i(x) =
A

2π

∫

∂D

log |x− y|ψi(y) dσ(y)

− B

2π

2∑

j=1

∫

∂D

(xi − yi)(xj − yj)
|x− y|2 ψj(y) dσ(y) .

Hence
[

(SDψ)1 + i(SDψ)2

]

(x) =
A

2π

∫

∂D

log |x− y|
[

ψ1(y) + iψ2(y)
]

dσ(y)

− B

2π

∫

∂D

(x1 − y1) + i(x2 − y2)
|x− y|2

[

(x1 − y1)ψ1(y) + (x2 − y2)ψ2(y)
]

dσ(y) .

Let z = x1 + ix2, ζ = y1 + iy2, and ψ = ψ1 + iψ2. Then
[

(SDψ)1 + i(SDψ)2

]

(z) =
A

2π

∫

∂D

log |z − ζ|ψ(ζ) dσ(ζ)

− B

2π

∫

∂D

z − ζ

|z − ζ|2

[

(z − ζ)ψ(ζ) + (z − ζ)ψ(ζ)
]

dσ(ζ)

=
A

4π

∫

∂D

log(z − ζ)ψ(ζ) dσ(ζ) − B

4π
z

∫

∂D

ψ(ζ)
z − ζ

dσ(ζ)

+
A

4π

∫

∂D

log(z − ζ)ψ(ζ) dσ(ζ)+
B

4π

∫

∂D

ζψ(ζ)
z − ζ

dσ(ζ)− B

4π

∫

∂D

ψ(ζ) dσ(ζ) .

Observe that
A

B
=
λ+ 3µ
λ+ µ

.

Then (6.55) follows with f defined by

f(z) :=
B

8µπ

∫

∂D

log(z − ζ)ψ(ζ) dσ(ζ) , (6.56)

and g defined in an obvious way. It should be noted that f defined by (6.56)
is holomorphic outside D. This is because ψ ∈ L2

Ψ (∂D) which implies that∫
∂D
ψ dσ = 0.
The equation (6.53) is identical to the third equation in (6.21). By the

fourth equation in (6.21) and (6.44), we get

∂

[

ϕe(z) + zϕ′
e(z) + ψe(z)

]

= ∂

[

ϕi(z) + zϕ′
i(z) + ψi(z)

]

,

from which (6.54) follows immediately. This finishes the proof. ��
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Elastic Moment Tensor

In this chapter, we introduce the notion of an elastic moment tensor (EMT’s)
as was defined in [23] and investigate some important properties of the first-
order EMT such as symmetry and positive-definiteness. We also obtain esti-
mation of its eigenvalues and compute EMT’s associated with ellipses, elliptic
holes, and hard inclusions of elliptic shape.

7.1 Asymptotic Expansion in Free Space

As in the electrostatic case, the elastic moment tensors describe the pertur-
bation of the displacement vector due to the presence of elastic inclusions. To
see this let us consider a transmission problem in the free space.

Let B be a bounded Lipschitz domain in IRd, d = 2, 3. Consider the fol-
lowing transmission problem






d∑

j,k,l=1

∂

∂xj

(

Cijkl
∂uk

∂xl

)

= 0 in IRd , i = 1, . . . , d ,

u(x) − H(x) = O(|x|1−d) as |x| → ∞ ,

(7.1)

where

Cijkl =
(
λχ(IRd\B)+ λ̃ χ(B)

)
δijδkl+

(
µχ(IRd\B)+µ̃ χ(B)

)
(δikδjl +δilδjk) ,

and H is a vector-valued function which satisfies Lλ,µH = 0 in IRd. In a
similar way to the proof of Theorem 6.15, we can show that the solution u to
(7.1) is represented as

u(x) =

{
H(x) + SBψ(x) , x ∈ IRd \B ,

S̃Bϕ(x) , x ∈ B ,
(7.2)

for a unique pair (ϕ,ψ) ∈ L2(∂B) × L2
Ψ (∂B) which satisfies

H. Ammari and H. Kang: LNM 1846, pp. 129–149, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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




S̃Bϕ
∣
∣
− − SBψ

∣
∣
+

= H|∂B on ∂B ,

∂

∂ν̃
S̃Bϕ

∣
∣
∣
∣
−
− ∂

∂ν
SBψ

∣
∣
∣
∣
+

=
∂H
∂ν

∣
∣
∣
∣
∂B

on ∂B .
(7.3)

Suppose that the origin 0 ∈ B and expand H in terms of Taylor series to write

H(x) =
( ∑

α∈INd

1
α!
∂αH1(0)xα, . . . ,

∑

α∈INd

1
α!
∂αHd(0)xα

)

=
d∑

j=1

∑

α∈INd

1
α!
∂αHj(0)xαej ,

where {ej}d
j=1 is the standard basis for IRd. This series converges uniformly

and absolutely on any compact set. For multi-index α ∈ INd and j = 1, . . . , d,
let f j

α and gj
α in L2(∂B) be the solution of





S̃Bf j
α|− − SBgj

α|+ = xαej |∂B ,

∂

∂ν̃
S̃Bf j

α

∣
∣
∣
∣
−
− ∂

∂ν
SBgj

α

∣
∣
∣
∣
+

=
∂(xαej)
∂ν

|∂B .
(7.4)

Then, by linearity, we get

ψ =
d∑

j=1

∑

α∈INd

1
α!
∂αHj(0)gj

α . (7.5)

By a Taylor expansion, we have

Γ(x− y) =
∑

β∈INd

1
β!
∂βΓ(x)yβ , y in a compact set, |x| → ∞ . (7.6)

Combining (7.2), (7.5), and (7.6) yields the expansion

u(x) = H(x)+
d∑

j=1

∑

α∈INd

∑

β∈INd

1
α!β!

∂αHj(0)∂βΓ(x)
∫

∂B

yβgj
α(y) dσ(y) , (7.7)

which is valid for all x with |x| > R where R is such that B ⊂ BR(0).

Definition 7.1 (Elastic moment tensors) For multi-index α ∈ INd and
j = 1, . . . , d, let f j

α and gj
α in L2(∂B) be the solution of (7.4). For β ∈ INd,

the elastic moment tensor (EMT) M j
αβ, j = 1, . . . , d, associated with the

domain B and Lamé parameters (λ, µ) for the background and (λ̃, µ̃) for B is
defined by

M j
αβ = (mj

αβ1, . . . ,m
j
αβd) =

∫

∂B

yβgj
α(y) dσ(y) .
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We note the analogy of the EMT with the polarization tensor studied in
Chap. 3. For the cavities in elastic body, Maz’ya and Nazarov introduced
the notion of Pólya-Szegö tensor in relation to the asymptotic expansion for
energy due to existence of a small hole or cavity [202]. See also [212] and [196].
This tensor is exactly the one defined by (7.4) when |α| = |β| = 1 and B is a
cavity.

Theorem 7.2 Let u be the solution of (7.1). Then for all x with |x| > R
where B ⊂ BR(0), u has the expansion

u(x) = H(x) +
d∑

j=1

∑

|α|≥1

∑

|β|≥1

1
α!β!

∂αHj(0)∂βΓ(x)M j
αβ . (7.8)

Proof. We first show that if α = 0, then gj
0 = 0 for j = 1, . . . , d. For that,

recall that (f j
0,g

j
0) is the unique solution to






S̃Bf j
0|− − SBgj

0|+ = ej |∂B ,

∂

∂ν̃
S̃Bf j

0

∣
∣
∣
∣
−
− ∂

∂ν
SBgj

0

∣
∣
∣
∣
+

= 0 .
(7.9)

Thus by Lemma 6.14, gj
0 = 0. Note that

∑d
j=1

∑
|α|=l

1
α!∂

αHj(0)gj
α is the

solution of the integral equation (7.4) when the right-hand side is given by
the function u :=

∑d
j=1

∑
|α|=l

1
α!∂

αHj(0)xαej . Moreover this function is a
solution of Lλ,µu = 0 in B and therefore, ∂u/∂ν|∂B ∈ L2

Ψ (∂B). Hence by The-
orem 6.13 we obtain that

∑d
j=1

∑
|α|=l

1
α!∂

αHj(z)gj
α ∈ L2

Ψ (∂B). In particular,
we have

d∑

j=1

∑

|α|=l

1
α!
∂αHj(z)

∫

∂B

gj
α(y) dσ(y) = 0 ∀ l .

Now (7.8) follows from (7.7). This completes the proof. ��

The asymptotic expansion formula (7.8) shows that the perturbation of
the displacement vector in IRd due to the presence of an inclusion B are
completely described by the EMT’s M j

αβ .
When |α| = |β| = 1, we make a slight change of notations: When α = ei

and β = ep (i, p = 1, . . . , d), put

mij
pq := mj

αβq , q, j = 1, . . . , d .

So, if we set f j
i := f j

α and gj
i := gj

α, then





S̃Bf j
i |− − SBgj

i |+ = xiej |∂B ,

∂

∂ν̃
S̃Bf j

i

∣
∣
∣
∣
−
− ∂

∂ν
SBgj

i

∣
∣
∣
∣
+

=
∂(xiej)
∂ν

|∂B ,
(7.10)
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and
mij

pq =
∫

∂B

xpeq · gj
i dσ . (7.11)

Lemma 7.3 Suppose that 0 < λ̃, µ̃ <∞. For p, q, i, j = 1, . . . , d,

mij
pq =

∫

∂B

[

−∂(xpeq)
∂ν

+
∂(xpeq)
∂ν̃

]

· u|− dσ , (7.12)

where u is the unique solution of the transmission problem





Lλ,µu = 0 in IRd \B ,

Lλ̃,µ̃u = 0 in B ,

u|+ − u|− = 0 on ∂B ,

∂u
∂ν

∣
∣
∣
∣
+

− ∂u
∂ν̃

∣
∣
∣
∣
−

= 0 on ∂B ,

u(x) − xiej = O(|x|1−d) as |x| → ∞ .

(7.13)

Proof. Note first that u defined by

u(x) :=

{
SBgj

i (x) + xiej , x ∈ IRd \B ,

S̃Bf j
i (x) , x ∈ B ,

is the solution of (7.13). Using (6.10) and (7.10) we compute

mij
pq =

∫

∂B

xpeq · gj
i dσ

=
∫

∂B

xpeq·
[ ∂

∂ν
SBgj

i

∣
∣
+
− ∂

∂ν
SBgj

i

∣
∣
−
]
dσ

= −
∫

∂B

xpeq ·
∂(xiej)
∂ν

dσ −
∫

∂B

xpeq·
[ ∂

∂ν
SBgj

i

∣
∣
− − ∂

∂ν̃
S̃Bf j

i

∣
∣
−

]
dσ

= −
∫

∂B

∂(xpeq)
∂ν

· xiej dσ −
∫

∂B

[∂(xpeq)
∂ν

· SBgj
i −

∂(xpeq)
∂ν̃

· S̃Bf j
i

]
dσ

=
∫

∂B

[
− ∂(xpeq)

∂ν
+
∂(xpeq)
∂ν̃

]
· S̃Bf j

i dσ ,

and hence (7.12) is established. ��

7.2 Properties of EMT’s

In this section we investigate some important properties of the first-order EMT
M = (mij

pq) such as symmetry and positive-definiteness. These properties of
EMT’s were first proved in [23]. It is worth mentioning that these properties
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make M an (anisotropic in general) elasticity tensor. We first define a bilinear
form on a domain B corresponding to the Lamé parameters λ, µ by

〈u,v〉λ,µ
B :=

∫

B

[

λ(∇ · u)(∇ · v) +
µ

2
(∇u + ∇uT ) · (∇v + ∇vT )

]

dx .

The corresponding quadratic form is defined by

Qλ,µ
B (u) := 〈u,u〉λ,µ

B .

If Lλ,µu = 0, then ∫

∂B

∂u
∂ν

· v dσ = 〈u,v〉λ,µ
B .

Proposition 7.4 Suppose that µ �= µ̃. Given a nonzero symmetric matrix
a = (aij), define ϕa, fa, and ga by

ϕa := (aij)x =
d∑

i,j=1

aijxjei , fa :=
d∑

i,j=1

aijf
j
i , ga :=

d∑

i,j=1

aijg
j
i . (7.14)

Define ā by

ā :=
µ̃+ µ

µ̃− µ

[
a− Tr(a)

d
Id
]
+
d(λ̃+ λ) + 2(µ̃+ µ)

d(λ̃− λ) + 2(µ̃− µ)

Tr(a)
d

Id , (7.15)

where Id is the d× d identity matrix. Then

〈ā,Ma〉 = 〈S̃Bfa, S̃Bfa〉λ̃,µ̃
B + 〈SBga,SBga〉λ,µ

IRd\B
+ 〈ϕa,ϕa〉λ,µ

B . (7.16)

Recall that 〈a, b〉 =
∑

ij aijbij for d× d matrices a = (aij) and b = (bij).

Proof. Set, for convenience, ϕ = ϕa, f = fa, and g = ga. Then these
functions clearly satisfy






S̃Bf − SBg = ϕ|∂B ,

∂

∂ν̃
S̃Bf
∣
∣
∣
∣
−
− ∂

∂ν
SBg

∣
∣
∣
∣
+

=
∂ϕ

∂ν

∣
∣
∣
∣
∂B

.
(7.17)

For j = 1, 2, define

ϕ1 :=
[

(aij) −
Tr(aij)
d

I

]

x and ϕ2 :=
Tr(aij)
d

x . (7.18)

Then ϕ = ϕ1 +ϕ2. Define f j and gj , j = 1, 2, by





S̃Bf j − SBgj = ϕj|∂B ,

∂

∂ν̃
S̃Bf j

∣
∣
∣
∣
−
− ∂

∂ν
SBgj

∣
∣
∣
∣
+

=
∂ϕj

∂ν

∣
∣
∂B

.
(7.19)
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It is clear that f = f1 + f2 and g = g1 + g2. We now claim that

〈ā,Ma〉 =
µ̃+ µ

µ̃− µ

∫

∂B

ϕ1 · g dσ +
d(λ̃ + λ) + 2(µ̃+ µ)

d(λ̃ − λ) + 2(µ̃− µ)

∫

∂B

ϕ2 · g dσ . (7.20)

In fact, we have

〈ā,Ma〉 =
d∑

i,j,p,q=1

āpqm
ij
pqaij

=
∫

pB

(
∑

pq

āpqxpeq) · (
∑

ij

aijg
j
i ) dσ .

But
∑

pq

āpqxpeq =
µ̃+ µ

µ̃− µ
ϕ1 +

d(λ̃ + λ) + 2(µ̃+ µ)

d(λ̃ − λ) + 2(µ̃− µ)
ϕ2 ,

and therefore (7.20) holds.
Next, using the jump relation (6.10) and (7.17), we compute that
∫

∂B

ϕj · g dσ =
∫

∂B

ϕj ·
[ ∂

∂ν
SBg

∣
∣
+
− ∂

∂ν
SBg

∣
∣
−
]
dσ (7.21)

= −
∫

∂B

ϕj ·
∂ϕ

∂ν
dσ −

∫

∂B

ϕj ·
[ ∂

∂ν
SBg

∣
∣
− − ∂

∂ν̃
S̃Bf

∣
∣
−
]
dσ

= −
∫

∂B

ϕj ·
∂ϕ

∂ν
dσ −

∫

∂B

[∂ϕj

∂ν
· SBg − ∂ϕj

∂ν̃
· S̃Bf

]
dσ

=
∫

∂B

[
− ∂ϕj

∂ν
+
∂ϕj

∂ν̃

]
· S̃Bf dσ .

Observe that ∇ · ϕ1 = 0. Put α := µ̃/µ. Then, from the definition of the
conormal derivative ∂/∂ν, we can immediately see that

∂ϕ1

∂ν
− ∂ϕ1

∂ν̃
= (1 − α)

∂ϕ1

∂ν
=

1 − α

α

∂ϕ1

∂ν̃
. (7.22)

Combining (7.17), (7.19), and (7.21), together with the second relation of
(7.22) yields

− α

1 − α

∫

∂B

ϕ1 · g dσ =
∫

∂B

∂ϕ1

∂ν̃
· S̃Bf dσ =

∫

∂B

ϕ1 ·
∂

∂ν̃
S̃Bf

∣
∣
− dσ

=
∫

∂B

S̃Bf1 ·
∂

∂ν̃
S̃Bf
∣
∣
− dσ −

∫

∂B

SBg1 ·
∂

∂ν
SBg

∣
∣
+
dσ −

∫

∂B

SBg1 ·
∂ϕ

∂ν
dσ

= 〈S̃Bf1, S̃Bf〉λ̃,µ̃
B + 〈SBg1,SBg〉λ,µ

IRd\B
− 〈SBg1,ϕ〉λ,µ

B .

On the other hand, it follows from (7.17), (7.21), and the first relation of
(7.22) that
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− 1
1 − α

∫

∂B

ϕ1 · g dσ =
∫

∂B

∂ϕ1

∂ν
· S̃Bf dσ

=
∫

∂B

∂ϕ1

∂ν
· SBg dσ +

∫

∂B

∂ϕ1

∂ν
· ϕ dσ

= 〈ϕ1,SBg〉λ,µ
B + 〈ϕ1,ϕ〉λ,µ

B .

Adding the above two identities we get

− 1 + α

1 − α

∫

∂B

ϕ1 · g dσ

= 〈S̃Bf1, S̃Bf〉λ̃,µ̃
B + 〈SBg1,SBg〉λ,µ

IRd\B
+ 〈ϕ1,ϕ〉λ,µ

B (7.23)

− 〈SBg1,ϕ〉λ,µ
B + 〈ϕ1,SBg〉λ,µ

B .

Observe that
1 + α

1 − α
=
µ+ µ̃

µ− µ̃
.

Put

β :=
dλ+ 2µ

d(λ− λ̃) + 2(µ− µ̃)
and β̃ :=

dλ̃+ 2µ̃

d(λ− λ̃) + 2(µ− µ̃)
.

It can be easily seen that

∂ϕ2

∂ν
− ∂ϕ2

∂ν̃
=

1
β

∂ϕ2

∂ν
=

1

β̃

∂ϕ2

∂ν̃
. (7.24)

Following the same lines of derivation of (7.23), we obtain

− (β + β̃)
∫

∂B

ϕ2 · g dσ

= 〈S̃Bf2, S̃Bf〉λ̃,µ̃
B + 〈SBg2,SBg〉λ,µ

IRd\B
+ 〈ϕ2,ϕ〉λ,µ

B (7.25)

− 〈SBg2,ϕ〉λ,µ
B + 〈ϕ2,SBg〉λ,µ

B .

Adding (7.23) and (7.25) yields

− 1 + α

1 − α

∫

∂B

ϕ1 · g dσ − (β + β̃)
∫

∂B

ϕ2 · g dσ

= 〈S̃Bf , S̃Bf〉λ̃,µ̃
B + 〈SBg,SBg〉λ,µ

IRd\B
+ 〈ϕ,ϕ〉λ,µ

B − 〈SBg,ϕ〉λ,µ
B + 〈ϕ,SBg〉λ,µ

B

= 〈S̃Bf , S̃Bf〉λ̃,µ̃
B + 〈SBg,SBg〉λ,µ

IRd\B
+ 〈ϕ,ϕ〉λ,µ

B .

Then the final formula (7.16) follows from (7.20), and the proof is complete.
��
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Theorem 7.5 (Symmetry) For p, q, i, j = 1, . . . , d, the following holds:

mij
pq = mij

qp , mij
pq = mji

pq , and mij
pq = mpq

ij . (7.26)

Proof. By Theorem 6.13 and the definition (7.4) of gj
i , we have gj

i ∈ L2
Ψ (∂B).

Since xpeq − xqep ∈ Ψ , we have
∫

∂B

(xpeq − xqep) · gj
i dσ = 0 .

The first assertion of (7.26) immediately follows from the above identity.
Since xiej − xjei ∈ Ψ , we have ∂(xiej − xjei)/∂ν = 0 on ∂B. Let g :=

gj
i − gi

j and f := f j
i − f i

j . Then f and g satisfies






S̃Bf |− − SBg|+ = (xiej − xjei)|∂B ,

∂

∂ν̃
S̃Bf

∣
∣
∣
∣
−
− ∂

∂ν
SBg

∣
∣
∣
∣
+

= 0 .

It then follows from Lemma 6.14 that g = 0 or

gj
i = gi

j .

This proves the second assertion of (7.26).
Because of the first and second identities of (7.26), 〈a,Mb〉 = 1

4 〈a +
aT ,M(b + bT )〉 for any matrices a, b. Therefore, in order to prove the third
identity in (7.26), it suffices to show that

〈a,Mb〉 = 〈b,Ma〉 , for all symmetric matrices a, b .

Let a, b be two symmetric matrices. Define ϕa, fa,ga,ϕaj , faj ,gaj , j =
1, 2, as in (7.14), (7.18), and (7.19). Define ϕb, f b,gb,ϕbj , f bj ,gbj , j = 1, 2,
likewise. Then,

〈a,Mb〉 =
∫

∂B

ϕa · gb dσ =
∫

∂B

ϕa1 · gb dσ +
∫

∂B

ϕa2 · gb dσ .

By (7.21), we get for j = 1, 2
∫

∂B

ϕaj · gb dσ =
∫

∂B

[∂ϕaj

∂ν
− ∂ϕaj

∂ν̃

]
· S̃Bf b dσ . (7.27)

Let α, β, and β̃ be as before. It then follows from (7.19), the first relation in
(7.22), and (7.27) that
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− 1
1 − α

∫

∂B

ϕa1 · gb dσ

=
∫

∂B

∂ϕa1

∂ν
· S̃Bf b dσ (7.28)

=
∫

∂B

∂(ϕa1 + SBga1)
∂ν

∣
∣
− · (SBga +ϕa) dσ

−
∫

∂B

∂(SBga1)
∂ν

∣
∣
− · (SBga +ϕa) dσ .

On the other hand, by (7.19), the second relation in (7.22), and (7.27), we
have

− α

1 − α

∫

∂B

ϕa1 · gb dσ

=
∫

∂B

∂ϕa1

∂ν̃
· S̃Bf b dσ =

∫

∂B

ϕa1 ·
∂(S̃Bf b)
∂ν̃

∣
∣
− dσ (7.29)

=
∫

∂B

S̃Bfa1 ·
∂(S̃Bf b)
∂ν̃

∣
∣
− dσ

−
∫

∂B

SBga1 ·
∂(SBgb)
∂ν

∣
∣
+
dσ −

∫

∂B

SBga1 ·
∂ϕb

∂ν
dσ .

Subtracting (7.29) from (7.28) yields
∫

∂B

ϕa1 · gb dσ

=
∫

∂B

∂(ϕa1 + SBga1)
∂ν

∣
∣
− · (SBga +ϕa) dσ (7.30)

−
∫

∂B

S̃Bfa1 ·
∂(S̃Bf b)
∂ν̃

∣
∣
− dσ

−
∫

∂B

SBga1 ·
[
∂(SBgb)
∂ν

∣
∣
− − ∂(SBgb)

∂ν

∣
∣
+

]

dσ .

= 〈ϕa1 + SBga1,ϕb + SBgb〉λ,µ
B − 〈S̃Bfa1, S̃Bf b〉λ̃,µ̃

B −
∫

∂B

SBga1 · gb dσ .

Note that β − β̃ = 1. We compute in the same way using (7.24) to obtain
that

∫

∂B

ϕa2 · gb dσ = 〈ϕa2 + SBga2,ϕb + SBgb〉λ,µ
B (7.31)

− 〈S̃Bfa2, S̃Bf b〉λ̃,µ̃
B −

∫

∂B

SBga2 · gb dσ .

Adding (7.30) and (7.31), we get
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∫

∂B

ϕa · gb dσ = 〈ϕa + SBga,ϕb + SBgb〉λ,µ
B (7.32)

− 〈S̃Bfa, S̃Bf b〉λ̃,µ̃
B −

∫

∂B

SBga · gb dσ .

Since ∫

∂B

SBga · gb dσ =
∫

∂B

ga · SBgb dσ ,

identity (7.32) obviously implies that

〈a,Mb〉 =
∫

∂B

ϕa · gb dσ =
∫

∂B

ϕb · ga dσ = 〈b,Ma〉 ,

and the proof is complete. ��

Theorem 7.6 (Positive-definiteness) If µ̃ > µ (µ̃ < µ, resp.), then M is
positive (negative, resp.) definite on the space of symmetric matrices. Let κ
be an eigenvalue of M . Then there are constants C1 and C2 depending only
on λ, µ, λ̃, µ̃ and the Lipschitz character of B such that

C1|B| ≤ |κ| ≤ C2 |B| .

Proof. Let ϕ = ax, as before. Since

〈ϕ,ϕ〉λ,µ
B = [λTr(aij)2 + 2µ

∑

ij

a2
ij ]|B| ,

we get from (7.16) that

〈ā,Ma〉 ≥ 2µ|B| ‖a‖2 ,

where ‖a‖2 =
∑

ij a
2
ij . On the other hand, we can obtain an upper bound for

mij
pq from its definition. In fact, let z ∈ B. Since

∫
∂B

gj
i dσ = 0, we have

mij
pq =

∫

∂B

xpeq · gj
i (x) dσ =

∫

∂B

(xp − zp)eq · gj
i (x) dσ .

It then follows from (6.28) that

|mij
pq|2 ≤

∫

∂B

(xp − zp)2 dσ
∫

∂B

|gj
i |2 dσ

≤ Cdiam(B)2|∂B|
(

‖xjei‖2
L2(∂B) + ‖∇(xjei)‖2

L2(∂B)

)

≤ Cdiam(B)2|∂B|2 .

Thus, if B satisfies the geometric condition: diam(B)|∂B| ≤ C0|B|, then we
have
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|mij
pq| ≤ C|B|

where the constant C depends on λ, µ, λ̃, µ̃ and C0. Observe that C0 depends
on the Lipschitz character of B. Hence

〈ā,Ma〉 ≤ C|B|‖a‖2 .

Therefore, there is a constant C depending on λ, µ, λ̃, µ̃ and the Lipschitz
character of B such that

µ|B| ‖a‖2 ≤ 〈ā,Ma〉 ≤ C|B| ‖a‖2 . (7.33)

Let κ be an eigenvalue of M and let the matrix a be its corresponding
eigenvector. Then 〈ā,Ma〉 = κ〈ā, a〉 and

〈ā, a〉 =
µ̃+ µ

µ̃− µ

∣
∣
∣
∣a−

Tr(a)
d

Id

∣
∣
∣
∣

2

+
d(λ̃ + λ) + 2(µ̃+ µ)

d(λ̃ − λ) + 2(µ̃− µ)

∣
∣
∣
∣
Tr(a)
d

Id

∣
∣
∣
∣

2

. (7.34)

Suppose that µ̃ > µ. Let

K1 := min
(
µ̃+ µ

µ̃− µ
,
d(λ̃ + λ) + 2(µ̃+ µ)

d(λ̃ − λ) + 2(µ̃− µ)

)

,

K2 := max
(
µ̃+ µ

µ̃− µ
,
d(λ̃ + λ) + 2(µ̃+ µ)

d(λ̃ − λ) + 2(µ̃− µ)

)

.

Then
K1|B| ‖a‖2 ≤ 〈ā, a〉 ≤ K2|B| ‖a‖2 ,

and therefore, estimates (7.33) imply that κ > 0 and

C1

K2
|B| ≤ κ ≤ C2

K1
|B| .

When µ̃ < µ, we obtain, by a word for word translation of the previous
proof, that κ < 0 and similar upper and lower bounds for |κ| hold. The proof
is complete. ��

Theorem 7.6 shows that the eigenvalues of M carries information on the
size of the corresponding domain. We now prove that some components of M
also carry the same information.

If (aij) = 1
2 (Eij + Eji), i �= j, then ϕ = (xjei + xiej)/2. Hence by (7.16),

we obtain

mij
ij =

µ̃− µ

µ̃+ µ

[

Qλ̃,µ̃
B (S̃Bf j

i ) +Qλ,µ
IRd\B

(SBgj
i ) + µ|B|

]

.

It then follows that
∣
∣mij

ij

∣
∣ ≥ µ

∣
∣
∣
∣
µ− µ̃

µ+ µ̃

∣
∣
∣
∣ |B| .

Thus, we have the following corollary.
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Corollary 7.7 Suppose i �= j. Then there exists a constant C depending only
on λ, µ, λ̃, µ̃, and the Lipschitz character of B such that

µ

∣
∣
∣
∣
µ− µ̃

µ+ µ̃

∣
∣
∣
∣ |B| ≤ |mij

ij | ≤ C|B| . (7.35)

7.3 EMT’s Under Linear Transforms

In this section we derive formulae for EMT’s under linear transforms.

Lemma 7.8 Let B be a bounded domain in IRd and let (mij
pq(B)) denote the

EMT associated with B. Then

mij
pq(εB) = εdmij

pq(B) , i, j, p, q = 1, . . . , d .

Proof. Let (f j
i ,g

j
i ) and (ϕj

i ,ψ
j
i ) be the solution of (7.10) on ∂B and ∂(εB),

respectively. We claim that

ψj
i (εx) = gj

i (x), x ∈ ∂B . (7.36)

If d = 3, then (7.36) simply follows from the homogeneity. In fact, in three
dimensions, the Kelvin matrix Γ(x) is homogeneous of degree −1. Thus for
any f ,

SεBf (εx) = εSBf ε(x), x ∈ ∂B ,

∂(SεBf)
∂ν

(εx) =
∂(SBf ε)
∂ν

(x) , x ∈ ∂B ,

where f ε(x) = f(εx). Then (7.36) follows from the uniqueness of the solution
to (7.10).

In two dimensions, note first the easy to prove fact:

Γ(εx) =
A

2π
log ε Id + Γ(x) .

Since the pair ((ϕj
i )ε, (ψ

j
i )ε) satisfies






S̃B(ϕj
i )ε

∣
∣
∣
∣
−

+
A

2π
log ε
ε

∫

∂B

(ϕj
i )ε dσ − SB(ψj

i )ε

∣
∣
∣
∣
+

= xiej |∂B ,

∂

∂ν̃
S̃B(ϕj

i )ε

∣
∣
∣
∣
−
− ∂

∂ν
SB(ψj

i )ε

∣
∣
∣
∣
+

=
∂(xiej)
∂ν

|∂B ,

we have





S̃B

[
(ϕj

i )ε − f j
i

] ∣∣
∣
∣
−
− SB

[
(ψj

i )ε − gj
i

] ∣∣
∣
∣
+

= constant ,

∂

∂ν̃
S̃B

[
(ϕj

i )ε − f j
i

] ∣∣
∣
∣
−
− ∂

∂ν
SB

[
(ψj

i )ε − gj
i

] ∣∣
∣
∣
+

= 0 ,
on ∂B .
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We then obtain (7.36) from Lemma 6.14. Armed with this identity, we now
write

mij
pq(εB) =

∫

∂(εB)

xpeq · gj
i (εB) dσ

= εd
∫

∂B

xpeq · gj
i (B) dσ = εdmij

pq(B) ,

to arrive at the desired conclusion. ��
Lemma 7.9 Let R = (rij) be a unitary transform in IRd and let B̂ be a
bounded Lipschitz domain in IRd and B = R(B̂). Let mij

pq and m̂ij
pq, i, j, p, q =

1, . . . , d, denote the EMT’s associated with B and B̂, respectively. Then,

mij
pq =

d∑

u,v=1

d∑

k,l=1

rpurqvrikrjlm̂
kl
uv . (7.37)

Proof. For i, j = 1, . . . , d, let (f j
i ,g

j
i ) and (f̂

j

i , ĝ
j
i ) be the solutions of (7.10)

on ∂B and ∂B̂, respectively. It follows from Lemmas 6.9 (ii) and 6.12 that

S̃B̂(R−1(f j
i ◦R))

∣
∣
∣
∣
−
− SB̂(R−1(gj

i ◦R))
∣
∣
∣
∣
+

= R−1
(
(xiej) ◦R

)
|∂B̂ ,

∂

∂ν̃
S̃B̂(R−1(f j

i ◦R))
∣
∣
∣
∣
−
− ∂

∂ν
SB̂(R−1(gj

i ◦R))
∣
∣
∣
∣
+

=
∂

∂ν

(
R−1((xiej) ◦R)

)
|∂B̂ .

It is easy to see that

R−1
(
(xiej) ◦R

)
= R(x)iR

−1(ej) =
d∑

k,l=1

rikrjl(xkel) , i, j = 1, . . . , d .

It then follows from the uniqueness of the solution to the integral equation
(7.4) that

R−1(gj
i ◦R) =

d∑

k,l=1

rikrjlĝ
l
k , i, j = 1, . . . , d .

By (7.11) and a change of variables, we have

mij
pq =

∫

∂B

xpeq · gj
i dσ

=
∫

∂B̂

R−1((xpeq) ◦R) · R−1(gj
i ◦R) dσ

=
∫

∂B̂

d∑

u,v=1

rpurqv(xuev) ·
d∑

k,l=1

rikrjlĝ
l
k dσ

=
d∑

u,v=1

d∑

k,l=1

rpurqvrikrjlm̂
kl
uv .



142 7 Elastic Moment Tensor

The proof is complete. ��

In two dimensions the unitary transform R is given by the rotation:

R = Rθ =
(
r11 r12
r21 r22

)

=
(

cos θ − sin θ
sin θ cos θ

)

.

The following corollary follows from (7.37) after elementary but tedious com-
putations.

Corollary 7.10 Let B = Rθ(B̂), and (mij
pq) and (m̂ij

pq) denote the EMT’s for
B and B̂, respectively. Then,





m11
11 = cos4 θm̂11

11 +
1
2

sin2(2θ)m̂11
22 + sin2(2θ)m̂12

12 + sin4 θm̂22
22 ,

m11
12 = sin θ cos3 θm̂11

11 −
1
4

sin(4θ)m̂11
22 −

1
2

sin(4θ)m̂12
12 − sin3 θ cos θm̂22

22 ,

m11
22 =

1
2

sin2(2θ)m̂11
11 + (1 − 1

2
sin2(2θ))m̂11

22 − sin2(2θ)m̂12
12 +

1
2

sin2(2θ)m̂22
22 ,

m12
12 =

1
2

sin2(2θ)m̂11
11 −

1
2

sin2(2θ)m̂11
22 + cos2(2θ)m̂12

12 +
1
4

sin2(2θ)m̂22
22 ,

m12
22 = sin3 θ cos θm̂11

11 +
1
4

sin(4θ)m̂11
22 +

1
2

sin(4θ)m̂12
12 − sin θ cos3 θm̂22

22 ,

m22
22 = sin4 θm̂11

11 +
1
2

sin2(2θ)m̂11
22 + sin2(2θ)m̂12

12 + cos4 θm̂22
22 .

(7.38)

Corollary 7.10 has an interesting consequence. If B is a disk, then mij
pq =

m̂ij
pq, i, j, p, q = 1, 2, for any θ. Thus we can observe from the first identity in

(7.38) that
m11

11 = m22
22 = m11

22 + 2m12
12 . (7.39)

It then follows from the second and the fifth identity in (7.38) that

m11
12 = m12

22 = 0 .

Thus we have the following lemma.

Lemma 7.11 If B is a disk, then the EMT (mij
pq) is isotropic and given by

mij
pq = m11

22δijδpq +m12
12(δipδjq + δiqδjp) , i, j, p, q = 1, 2 . (7.40)

We also obtain the following lemma from Corollary 7.10.

Lemma 7.12 Suppose that either m11
12 +m12

22 or m11
11 −m22

22 is not zero. Then

m11
12 +m12

22

m11
11 −m22

22

=
1
2

tan 2θ . (7.41)

Proof. We can easily see from (7.38) that

m11
11 −m22

22 = cos 2θ(m̂11
11 − m̂22

22) , m11
12 +m12

22 =
1
2

sin 2θ(m̂11
11 − m̂22

22) .

Thus we get (7.41). ��
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7.4 EMT’s for Ellipses

In this section we compute the EMT associated with an ellipse. We suppose
that the ellipse takes the form

B :
x2

a2
+
y2

b2
= 1 , a, b > 0 . (7.42)

The EMT’s for general ellipses can be found using (7.38).
Suppose that B is an ellipse of the form (7.42). Let (λ, µ) and (λ̃, µ̃) be

the Lamé constants for IR2 \B and B, respectively. We will be looking for the
solution to (7.13).

Let u = (u, v) be a solution to (7.13) and let ue := u|IR2\B and ui := u|B .
By Theorem 6.20, there are functions ϕe and ψe holomorphic in C \B and ϕi

and ψi holomorphic in B such that

2µ(ue + ive)(z) = κϕe(z) − zϕ′
e(z) − ψe(z) , z ∈ C \B , (7.43)

2µ̃(ui + ivi)(z) = κ̃ϕi(z) − zϕ′
i(z) − ψi(z) , z ∈ B , (7.44)

where

κ =
λ+ 3µ
λ+ µ

, κ̃ =
λ̃+ 3µ̃

λ̃+ µ̃
,

and





1
2µ

(

κϕe(z) − zϕ′
e(z) − ψe(z)

)

=
1
2µ̃

(

κ̃ϕi(z) − zϕ′
i(z) − ψi(z)

)

,

ϕe(z) + zϕ′
e(z) + ψe(z) = ϕi(z) + zϕ′

i(z) + ψi(z) + c on ∂B ,

(7.45)
where c is a constant. In order to find such ϕe, ψe, ϕi, ψi, we use elliptic coor-
dinates as done in [216]. Let

r :=
1
2
(a+ b) , m :=

a− b

a+ b
, (7.46)

and define
z = x+ iy = ω(ζ) := r

(
ζ +

m

ζ

)
.

Then ω maps the exterior of the unit disk onto C \B.

Lemma 7.13 Suppose that m > 0. For given pair of complex numbers α and
β, there are unique complex numbers A,B,C,E, F such that the functions
ϕe, ψe, ϕi, and ψi defined by

ϕe ◦ ω(ζ) = r

[

αζ +
A

ζ

]

, |ζ| > 1 ,

ψe ◦ ω(ζ) = r

[

βζ +
B

ζ
+

Cζ

ζ2 −m

]

, |ζ| > 1 ,

ϕi(z) = Ez , z ∈ B ,

ψi(z) = Fz , z ∈ B ,

(7.47)
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satisfy the conditions (6.53) and (6.54). Here, the constant c in (6.54) can be
taken to be zero. In fact, A,B,C,E, F are the unique solutions of the algebraic
equations 





κ

µ
α− 1

µ

(A

m
+B

)
=
κ̃E − E

µ̃
− m

µ̃
F ,

α+
(A

m
+B

)
= E + E +mF ,

κ

µ
A− 1

µ

(
mα+ β

)
= m

κ̃E − E

µ̃
− 1
µ̃
F ,

A+
(
mα+ β

)
= m(E + E) + F ,

(m2 + 1)α−
(
m+

1
m

)
A+ C = 0 .

(7.48)

Proof. Since
ω(ζ)
ω′(ζ)

=
ζ2 +m

ζ(1 −mζ2)
, |ζ| = 1 ,

we can check by elementary but tedious computations that the transmission
conditions (7.45) are equivalent to the algebraic equations (7.48). Using Mat-
lab, we can check that (7.48) has a unique solution A,B,C,E, F provided
that m > 0. The proof is complete. ��

For a given pair of complex numbers α and β, let u = (u, v) be the solution
defined by ϕ and ψ given by (7.47). Define






mpq(α, β) :=
∫

∂B

∂(xpeq)
∂ν

· (ue, ve) dσ ,

m̃pq(α, β) :=
∫

∂B

∂(xpeq)
∂ν̃

· (ue, ve) dσ .
(7.49)

In order to compute the EMT mij
pq associated with B, we need to find the

solution of (7.13) which behaves at infinity as xiej . Let α = α1 + iα2, etc, and
observe that the exterior solution ue + ive behaves at infinity as

ue(z) + ive(z) =
1
2µ

[

(κα1 − α1 − β1)x+ (−κα2 − α2 + β2)y
]

+
i

2µ

[

(κα2 + α2 + β2)x+ (κα1 − α1 + β1)y
]

+O(|z|−1) . (7.50)

Therefore, to compute m11
pq for example, we need to take α = µ/(κ− 1) and

β = −µ. In view of (7.12) and (7.50), we get





m11
pq = −mpq(

µ

κ− 1
,−µ) + m̃pq(

µ

κ− 1
,−µ) ,

m22
pq = −mpq(

µ

κ− 1
, µ) + m̃pq(

µ

κ− 1
, µ) ,

m12
pq = −mpq(

iµ

κ+ 1
, iµ) + m̃pq(

iµ

κ+ 1
, iµ) .

(7.51)
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We now compute mpq(α, β). For p, q = 1, 2, let a = apq and b = bpq be
complex numbers such that f(z) = az and g(z) = bz satisfy

2µ((xpeq)1 + i(xpeq)2) = κf(z)− zf ′(z) − g(z) , z ∈ C . (7.52)

In fact, (a, b) is given by

(a, b) =






(
µ

κ− 1
,−µ) if (p, q) = (1, 1) ,

(
µ

κ− 1
, µ) if (p, q) = (2, 2) ,

(
iµ

κ+ 1
, iµ) if (p, q) = (1, 2) .

(7.53)

Then, by (6.44), we get
((

∂(xpeq)
∂ν

)

1

+ i

(
∂(xpeq)
∂ν

)

2

)

dσ (7.54)

= −i∂
[

f(z) + zf ′(z) + g(z)
]

= −i∂
[

2�az + b̄z̄

]

. (7.55)

Therefore

mpq(α, β) = �
∫

∂B

((
∂(xpeq)
∂ν

)

1

+ i

(
∂(xpeq)
∂ν

)

2

)

(ue − ive) dσ

= �−i
2µ

∫

∂B

[

κϕe(z) − z̄ϕ′
e(z) − ψe(z)

]

∂

[

2�az + b̄z̄

]

= �−i
2µ̃

∫

∂B

[

κ̃ϕi(z) − z̄ϕ′
i(z) − ψi(z)

] [

2�adz + b̄dz̄

]

,

where the last equality comes from (7.45). It then follows from (7.47) that

mpq(α, β) = �−i
2µ̃

∫

∂B

[

(κ̃E − E)z̄ − Fz

][

2�adz + b̄dz̄

]

= �π
µ̃

[

2�a(κ̃E − E) + b̄F

]

. (7.56)

Following the same lines of proof, we get

m̃pq(α, β) = �π
µ̃

[

2�ã(κ̃E − E) + b̃F

]

, (7.57)

where (ã, b̃) is defined by (7.53) with µ, κ replaced by µ̃, κ̃.
Denote the solutions of (7.48), which depends on given α and β, by A =

A1+iA2 = A(α, β), etc. Then we obtain from (7.51), (7.53), (7.56), and (7.57)
that
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µ̃

|B|

[

−mpq(α, β) + m̃pq(α, β)
]

=






(κ̃− 1)(λ̃− λ+ µ̃− µ)E1 − (µ̃− µ)F1 if p = q = 1 ,

(µ̃− µ)F2 if p �= q ,

(κ̃− 1)(λ̃− λ+ µ̃− µ)E1 + (µ̃− µ)F1 if p = q = 2 .

(7.58)

For given α, β, we solve the system of linear equations (7.48) to find E(α, β)
and F (α, β), and using (7.51) and (7.58) we can find mij

pq, i, j, p, q = 1, 2. In
short, we have the following theorem.

Theorem 7.14 Suppose that 0 < λ̃, µ̃ < ∞. Let B be the ellipse of the form
(7.42). Then,

m12
11 = m12

22 = 0 , (7.59)

and m11
11,m

22
22,m

11
22,m

12
12 can be computed using (7.48), (7.51), and (7.58).

The remaining terms are determined by the symmetry properties (7.26). The
EMT’s for rotated ellipses can be found using (7.38).

Proof. It suffices to show (7.59). Since the coefficients of (7.48) are real,
E1(α, β) = F1(α, β) = 0 if α and β are purely imaginary, and E2(α, β) =
F2(α, β) = 0 if α and β are real. Thus (7.59) follows from (7.51) and (7.58).
This completes the proof. ��

Since the meaning of (7.48) is not clear when m = 0, i.e., when B is a
disk, we now compute the EMT for a disk. If B is a disk of radius one, then
we can easily check that (7.13) admits a unique solution u = (u, v) given by
ϕ and ψ that are defined by

ϕe(z) = αz +
A

z
, |z| > 1 ,

ψe(z) = βz +
B

z
+
C

z3
, |z| > 1,

ϕi(z) = Ez , |z| < 1 ,
ψi(z) = Fz , |z| < 1 ,

(7.60)

where the coefficients A,B,C,E, F satisfy





A = C =
µ̃− µ

κµ̃+ µ
β̄ ,

B =
µ(κ̃+ 1)
µ− µ̃

E − ᾱ− κµ̃+ µ

µ− µ̃
α ,

E =
µ̃(κ+ 1)

(κ̃− 1)µ+ 2µ̃
�α+ i

µ̃(κ+ 1)
µ(κ̃+ 1)

�α ,

F =
µ̃(κ+ 1)
κµ̃+ µ

β .

(7.61)

We then obtain the following theorem from (7.51) and (7.58).
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Theorem 7.15 Let B be a disk. Then





m11
22 = |B|µ

[
(κ̃− 1)(κ+ 1)(λ̃− λ+ µ̃− µ)

(κ̃µ+ 2µ̃− µ)(κ− 1)
− (µ̃− µ)(κ+ 1)

κµ̃+ µ

]

,

m12
12 = |B|µ (κ+ 1)(µ̃− µ)

κµ̃+ µ
.

The remaining terms are determined by (7.40) and the symmetry properties
(7.26).

7.5 EMT’s for Elliptic Holes and Hard Ellipses

In this section we compute EMT’s for elliptic holes and hard inclusions of
elliptic shape. By a hole we mean that λ̃ = µ̃ = 0 while by a hard inclusion
we mean that µ̃ → ∞. In other words, Young’s modulus tends to ∞, while
Poisson’s ratio tends to 0. Young’s modulus, E, and Poisson’s ratio, ν, are
defined to be

E =
µ(2µ+ dλ)
λ+ µ

, ν =
λ

2(λ+ µ)
.

We note that the EMT’s associated with elliptic holes with λ̃ = µ̃ = 0 were
computed in [196] and [210].

Let us deal with the hard inclusions first. If µ̃ = ∞, then we obtain from
(7.48) that






κα−
(A

m
+B

)
= 0 ,

α+
(A

m
+B

)
= E + E +mF ,

κA−
(
mα+ β

)
= 0 ,

A+
(
mα+ β

)
= m(E + E) + F ,

and hence 




E + E +mF = (κ+ 1)α ,

m(E + E) + F =
κ+ 1
κ

(mα+ β) .

Thus we get 




E + E =
κ+ 1

1 −m2

[

α− m2

κ
α− m

κ
β

]

,

F =
κ+ 1

1 −m2

[

−mα+
m

κ
α+

1
κ
β

]

.

Observe that the first equation has a solution only when α and β are real.
As µ̃→ ∞, κ̃→ 3, and hence we obtain from (7.58) that
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1
|B|

[

mpq(α, β) − m̃pq(α, β)
]

=






−2E1 + F1 if p = q = 1 ,

−F2 if p �= q ,

−2E1 − F1 if p = q = 2 .

(7.62)

If α = µ/(κ− 1) and β = −µ, then





E + E =
µ(κ+ 1)
1 −m2

[
1

κ− 1
− m2

κ(κ− 1)
+
m

κ

]

,

F =
µ(κ+ 1)
1 −m2

[

− m

κ− 1
+

m

κ(κ− 1)
− 1
κ

]

.

Thus we arrive at

m11
11 = −mpq(

µ

κ− 1
,−µ) + m̃pq(

µ

κ− 1
,−µ) = |B|µ(κ+ 1)(m− 2κ+ 1)

(m− 1)κ(κ− 1)
.

Similarly we can compute mij
pq using (7.51) and (7.62). The result of compu-

tations is summarized in the following theorem.

Theorem 7.16 Let B be the ellipse of the form (7.42) and suppose that µ̃ =
∞. Then, in addition to (7.59),






m11
11 = |B|µ(κ+ 1)(m− 2κ+ 1)

(m− 1)κ(κ− 1)
,

m22
22 = |B|µ(κ+ 1)(1 −m− 2κ)

(m− 1)κ(κ− 1)
,

m11
22 = |B| κ+ 1

κ(1 − κ)
,

m12
12 = |B| µ(κ+ 1)

(1 +m)κ
.

(7.63)

The remaining terms are determined by the symmetry properties (7.26). The
EMT’s for rotated ellipses can be found using (7.38).

Let us now compute the EMT’s for holes. To this end, we need to change
the presentation of formula (7.58). By equating the first and third equations
in (7.48), we obtain from (7.56) and (7.57) that

mpq(α, β) − m̃pq(α, β)

=
π

(1 −m2)µ
�
[

2�(a− ã)
(

κ(α−mA) + (m2ᾱ− Ā

m
+mβ̄ − B̄)

)

+ (b̄ − b̃)
(
κ(mα−A) + (mᾱ− Ā+ β̄ −mB̄)

)
]

. (7.64)

If λ̃ = µ̃ = 0, then E = F = 0 in (7.48). Thus we get
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




α+
(A

m
+B

)
= 0 ,

A+
(
mα+ β

)
= 0 ,

(m2 + 1)α−
(
m+

1
m

)
A+ C = 0 .

(7.65)

Since ã = b̃ = 0, it follows from (7.64) and (7.65) that

mpq(α, β) =
π(κ+ 1)

µ
�
[

ᾱ(2�a+ b̄m) + (mα+ β)(2�am+ b̄)
]

.

We now obtain the following theorem from (7.51) and (7.53) after elementary
but tedious computations.

Theorem 7.17 Let B be the ellipse of the form (7.42) and suppose that λ̃ =
µ̃ = 0. Then, in addition to (7.59),






m11
11 = −|B|µ(κ+ 1)

(κ− 1)2
[2(1 +m2) − 4m(κ− 1) + (κ− 1)2] ,

m22
22 = −|B|µ(κ+ 1)

(κ− 1)2
[2(1 +m2) + 4m(κ− 1) + (κ− 1)2] ,

m11
22 = |B|µ(κ+ 1)

(κ− 1)2
[−2(1 +m2) + (κ− 1)2] ,

m12
12 = −|B|µ(κ+ 1) .

(7.66)

The remaining terms are determined by the symmetry properties (7.26). The
EMT’s for rotated ellipses can be found using (7.38).

As an immediate consequence of Theorem 7.16 and Theorem 7.17, we get
the following result.

Corollary 7.18 Let B be a disk. If λ̃ = µ̃ = 0, then





m11
22 = |B|µ(κ+ 1)

(κ− 1)2
[−2 + (κ− 1)2] ,

m12
12 = −|B|µ(κ+ 1) .

If µ̃ = ∞, then 




m11
22 = |B| κ+ 1

κ(1 − κ)
,

m12
12 = |B|µ(κ+ 1)

κ
.
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Derivation of Full Asymptotic Expansions

We suppose that the elastic medium occupies a bounded domain Ω in IRd,
with a connected Lipschitz boundary ∂Ω. Let the constants (λ, µ) denote the
background Lamé coefficients, that are the elastic parameters in the absence
of any inclusions. Suppose that the elastic inclusion D in Ω is given by

D = εB + z , (8.1)

where B is a bounded Lipschitz domain in IRd. We assume that there exists
c0 > 0 such that

inf
x∈D

dist(x, ∂Ω) > c0 .

Suppose that D has the pair of Lamé constants (λ̃, µ̃) satisfying (6.18) and
(6.19).

The purpose of this chapter is to establish a complete asymptotic formula
for the displacement vector in terms of the reference Lamé constants, the
location of the inclusion and its geometry. Our derivation is rigorous, and
based on layer potential techniques. The asymptotic expansions in this chapter
are valid for an elastic inclusion with Lipschitz boundaries.

8.1 Full Asymptotic Expansions

We first observe that if D is of the form (8.1), then the Lipschitz character
of D, and hence the constant C in (6.28), depends on ε. However, for such a
domain, we can obtain the following lemma by scaling the integral equation
(6.22) and the estimate (6.28).

Lemma 8.1 For any given (F,G) ∈W 2
1 (∂D)×L2(∂D), let (f ,g) ∈ L2(∂D)×

L2(∂D) be the solution of (6.22). Then there exists a constant C depending
only on λ, µ, λ̃, µ̃, and the Lipschitz character of B, but not on ε, such that

‖g‖L2(∂D) ≤ C
(
ε−1‖F‖L2(∂D) + ‖∂F

∂T
‖L2(∂D) + ‖G‖L2(∂D)

)
. (8.2)

H. Ammari and H. Kang: LNM 1846, pp. 151–157, 2004.
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Here ∂/∂T denotes the tangential derivative.

Proof. Assuming without loss of generality that z = 0, we scale x = εy,
y ∈ B. Let f ε(y) = f(εy), y ∈ ∂B, etc. Let (ϕ,ψ) be the solution to the
integral equation






S̃Bϕ|− − SBψ|+ = ε−1Fε on ∂B ,

∂

∂ν̃
S̃Bϕ

∣
∣
∣
∣
−
− ∂

∂ν
SBψ

∣
∣
∣
∣
+

= Gε on ∂B .

Following the lines of the proof of (7.36), we can show that

gε = ψ .

It then follows from (6.28) that

‖gε‖L2(∂B) = ‖ψε‖L2(∂B) ≤ C

(

‖ε−1Fε‖W 2
1 (∂B) + ‖Gε‖L2(∂B)

)

,

where C does not depend on ε. By scaling back using x = εy, we obtain (8.2).
This completes the proof. ��

Let u be the solution of (6.21). In this chapter, we derive an asymptotic
formula for u as ε goes to 0 in terms of the background solution U. The
background solution is the solution of (6.13).

Recall that u is represented as

u(x) = U(x) −NDψ(x) , x ∈ ∂Ω , (8.3)

where ψ is defined by (6.28). See (6.38). Let H be the function defined in
(6.27). For a given integer n, define H(n) by

H(n)(x) : =
n∑

|α|=0

1
α!
∂αH(z)(x− z)α

=
( n∑

|α|=0

1
α!
∂αH1(z)(x− z)α , . . . ,

n∑

|α|=0

1
α!
∂αHd(z)(x− z)α

)

=
d∑

j=1

n∑

|α|=0

1
α!
∂αHj(z)(x− z)αej .

Define ϕn and ψn in L2(∂D) by





S̃Dϕn|− − SDψn|+ = H(n)|∂D ,

∂

∂ν̃
S̃Dϕn

∣
∣
∣
∣
−
− ∂

∂ν
SDψn

∣
∣
∣
∣
+

=
∂H(n)

∂ν

∣
∣
∂D

,
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and set
ϕ := ϕn +ϕR, and ψ := ψn +ψR .

Since (ϕR,ψR) is the solution of the integral equation (6.22) with F = H −
H(n) and G = ∂(H− H(n))/∂ν, it follows from (8.2) that

‖ψR‖L2(∂D) ≤ C
(
ε−1‖H− H(n)‖L2(∂D) + ‖∇(H− H(n))‖L2(∂D)

)
. (8.4)

By (6.30) we get

ε−1‖H− H(n)‖L2(∂D) + ‖∇(H− H(n))‖L2(∂D)

≤ |∂D|1/2

[

ε−1‖H− H(n)‖L∞(∂D) + ‖∇(H− H(n))‖L∞(∂D)

]

≤ ‖H‖Cn+1(D)ε
n|∂D|1/2

≤ C‖g‖L2(∂Ω)ε
n|∂D|1/2 .

It then follows from (8.4) that

‖ψR‖L2(∂D) ≤ C‖g‖L2(∂Ω)ε
n|∂D|1/2 , (8.5)

where C is independent of ε.
By (8.3) we get

u(x) = U(x) −NDψn(x) −NDψR(x) , x ∈ ∂Ω . (8.6)

The first two terms in (8.6) are the main terms in our asymptotic expansion
and the last term is the error term. We claim that the error term is O(εn+d).
In fact, since ψ,ψn ∈ L2

Ψ (∂D), in particular,
∫

∂D ψ dσ =
∫

∂D ψn dσ = 0, we
get
∫

∂D ψR dσ = 0. It then follows from (8.5) that, for x ∈ ∂Ω,

|NDψR(x)| =
∣
∣
∣
∣

∫

∂D

(
N(x− y) − N(x− z)

)
ψR(y) dσ(y)

∣
∣
∣
∣

≤ Cε|∂D|1/2‖ψR‖L2(∂D)

≤ C‖g‖L2(∂Ω)ε
n+d .

In order to expand out the second term in (8.6), we first define some
auxiliary functions. Let D0 := D − z, the translate of D by −z. For multi-
index α ∈ INd and j = 1, . . . , d, define ϕj

α and ψj
α by






S̃D0ϕ
j
α|− − SD0ψ

j
α|+ = xαej |∂D0 ,

∂

∂ν
S̃D0ϕ

j
α

∣
∣
∣
∣
−
− ∂

∂ν
SD0ψ

j
α

∣
∣
∣
∣
+

=
∂(xαej)
∂ν

|∂D0 .
(8.7)

Then the linearity and the uniqueness of the solution to (8.7) yield
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ψn(x) =
d∑

j=1

n∑

|α|=0

1
α!
∂αHj(z)ψj

α(x− z) , x ∈ ∂D .

Recall that D0 = εB and (f j
α,g

j
α) is the solution of (7.4). Then, following the

same lines of the proof of (7.36), we can see that

ψj
α(x) = ε|α|−1gj

α(ε−1x) ,

and hence

ψn(x) =
d∑

j=1

n∑

|α|=0

1
α!
∂αHj(z)ε|α|−1gj

α(ε−1(x− z)) , x ∈ ∂D .

We thus get

NDψn(x) =
d∑

j=1

n∑

|α|=0

1
α!
∂αHj(z)ε|α|+d−2

∫

∂B

N(x, z + εy)gj
α(y) dσ(y). (8.8)

We now consider the asymptotic expansion of N(x, z + εy) as ε → 0. We
remind the reader that x ∈ ∂Ω and z + εy ∈ ∂D. By (6.37) we have the
following relation:

(−1
2
I + KΩ)

[

N(·, εy + z)
]

(x) = Γ(x − z − εy) , x ∈ ∂Ω, modulo Ψ .

Since

Γ(x − εy) =
+∞∑

|β|=0

1
β!
ε|β|∂β(Γ(x))yβ ,

we get, modulo Ψ ,

(−1
2
I + KΩ)

[

N(·, εy + z)
]

(x) =
+∞∑

|β|=0

1
β!
ε|β|∂β(Γ(x − z))yβ

= (−1
2
I + KΩ)




+∞∑

|β|=0

1
β!
ε|β|∂β

z N(·, z)yj



 (x) .

Since N(·, w) ∈ L2
Ψ (∂Ω) for all w ∈ Ω, we have the following asymptotic

expansion of the Neumann function.

Lemma 8.2 For x ∈ ∂Ω, z ∈ Ω, y ∈ ∂B, and ε→ 0,

N(x, εy + z) =
+∞∑

|β|=0

1
β!
ε|β|∂β

z N(x, z)yβ .
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It then follows from (8.8) that

NDψn(x)

=
d∑

j=1

n∑

|α|=0

1
α!
∂αHj(z)ε|α|+d−2

+∞∑

|β|=0

1
β!
ε|β|∂β

z N(x, z)
∫

∂B

yβgj
α(y) dσ(y) .

Note that
∑d

j=1

∑
|α|=l

1
α!∂

αHj(z)gj
α is the solution of (6.28) when the right-

hand side is given by the function

u =
d∑

j=1

∑

|α|=l

1
α!
∂αHj(z)xαej .

Moreover, this function is a solution of Lλ,µu = 0 in B and therefore,
∂u/∂ν|∂B ∈ L2

Ψ (∂B). Hence, by Theorem 6.13, we obtain that

d∑

j=1

∑

|α|=l

1
α!
∂αHj(z)gj

α ∈ L2
Ψ (∂B) .

In particular, we have

d∑

j=1

∑

|α|=l

1
α!
∂αHj(z)

∫

∂B

gj
α(y) dσ(y) = 0 ∀ l .

On the other hand, gj
0 = 0 by Lemma 6.14. We finally obtain by combining

these facts with the above identity that

NDψn(x) =
d∑

j=1

n∑

|α|=1

+∞∑

|β|=1

ε|α|+|β|+d−2

α!β!
∂αHj(z)∂β

z N(x, z)
∫

∂B

yβgj
α(y) dσ(y) .

(8.9)
We then obtain from the definition of the elastic moment tensors, (8.6),

and (8.9) that

u(x) = U(x) −
d∑

j=1

n∑

|α|=1

n−|α|+1∑

|β|=1

ε|α|+|β|+d−2

α!β!
∂αHj(z)∂β

z N(x, z)M j
αβ

+O(εn+d) , x ∈ ∂Ω .

(8.10)

Observe that formula (8.10) still uses the function H which depends on
ε. Therefore the remaining task is to transform this formula into a formula
which is expressed using only the background solution U.

By (6.7), U = −SΩ(g)+DΩ(U|∂Ω) in Ω. Thus substitution of (8.10) into
(6.27) yields that, for any x ∈ Ω,
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H(x) = −SΩ(g)(x) + DΩ(u|∂Ω)(x)

= U(x) −
d∑

j=1

n∑

|α|=1

n−|α|+1∑

|β|=1

ε|α|+|β|+d−2

α!β!
∂αHj(z)DΩ(∂β

z N(., z))(x)M j
αβ

+O(εn+d) . (8.11)

In (8.11) the remainder O(εn+d) is uniform in the Ck-norm on any compact
subset of Ω for any k and therefore

∂γH(z) +
d∑

j=1

n∑

|α|=1

n−|α|+1∑

|β|=1

ε|α|+|β|+d−2∂αHj(z)P
j
αβγ = ∂γU(z) +O(εn+d) ,

(8.12)
for all γ ∈ INd with |γ| ≤ n, where

P j
αβγ =

1
α!β!

∂γDΩ(∂β
z N(., z))(x)|x=zM

j
αβ .

We now introduce a linear transform which transforms ∂αH(z) to ∂αU(z).
Let

N := d

n∑

k=1

(k + 1)(k + 2)
2

,

and define the linear transform Pε on IRN by

Pε : (vγ)γ∈INd,|γ|≤n 	→
(
vγ +

d∑

j=1

n∑

|α|=1

n−|α|+1∑

|β|=1

ε|α|+|β|+d−2vj
αP

j
αβγ

)

γ∈INd,|γ|≤n
.

Observe that
Pε = I − εdP1 − . . .− εn+d−1Pn ,

where the definitions of Pj are obvious. Since ε is small, Pε is invertible. We
now define Qi, i = 1, . . . , n− 1, by

P−1
ε = I + εdQ1 + . . .+ εn+d−1Qn +O(εn+d) .

It then follows from (8.12) that

((∂γH)(z))|γ|≤n = (I +
n−d∑

i=1

εi+2Qi)
(
((∂γU)(z))|γ|≤n

)
+O(εn) ,

which yields the main result of this chapter.

Theorem 8.3 Let u be the solution of (6.19) and U is the background solu-
tion. The following pointwise asymptotic expansion on ∂Ω holds:
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u(x) = U(x)

−
d∑

j=1

n∑

|α|=1

n−|α|+1∑

|β|=1

ε|α|+|β|+d−2

α!β!
(
(I +

n−d∑

i=1

εi+2Qi)((∂γU)(z))
)j

α
∂β

z N(x, z)M j
αβ

+O(εn+d) , x ∈ ∂Ω .
(8.13)

The operator Qj describes the interaction between the inclusion and ∂Ω.
It is interesting to compare (8.13) with formula (7.8) in the free space. In (7.8)
no Qj involves. It is because the free space does not have any boundary.

If n = d, (8.13) takes simpler form: for x ∈ ∂Ω,

u(x) = U(x)−
d∑

j=1

d∑

|α|=1

d+1−|α|∑

|β|=1

ε|α|+|β|+d−2

α!β!
(∂αUj)(z)∂β

z N(x, z)M j
αβ+O(ε2d) .

(8.14)
Observe that no Qj appears in (8.14). This is because D is well-separated
from ∂Ω.

The coefficient of the leading-order term, namely, the εd-term of the ex-
pansion is

d∑

j,p,q=1

(∂pUj)(z)∂zqNij(x, z)mij
pq, i = 1, . . . , d .

By Theorem 7.6, this term is bounded below and above by constant multiples
of

‖∇U(z)‖




d∑

q,j=1

|∂zqNij(x, z)|2




1/2

,

for i = 1, . . . , d, and those constants are independent of ε.

When there are multiple well-separated inclusions

Ds = εBs + zs, s = 1, · · · ,m ,

where |zs−zs′ | > 2c0 for some c0 > 0, s �= s′, then by iterating formula (8.14),
we obtain the following theorem.

Theorem 8.4 The following asymptotic expansion holds uniformly for x ∈
∂Ω:

u(x) = U(x)

−
m∑

s=1

d∑

j=1

d∑

|α|=1

d+1−|α|∑

|β|=1

ε|α|+|β|+d−2

α!β!
(∂αUj)(zs)∂β

z N(x, zs)(M s)j
αβ

+O(ε2d) ,

where (M s)j
αβ are EMT’s corresponding to Bs, s = 1, · · · ,m.



9

Detection of Inclusions

As in the previous chapter, assume that the elastic inclusion D in Ω is given
by D = εB+z, where B is a bounded Lipschitz domain in IRd. In this chapter,
we propose a method to detect the elastic moment tensors and the center z
of D via a finite number of pairs of tractions and displacements caused by
tractions measured on ∂Ω. The reconstructed EMT will provide information
on the size and some geometric features of the inclusion. Our methods use the
asymptotic formula derived in the previous chapter.

9.1 Detection of EMT’s

Given a traction g ∈ L2
Ψ (∂Ω), let H[g] be defined by

H[g](x) = −SΩ(g)(x) + DΩ(f )(x) , x ∈ IRd \ ∂Ω, f := u|∂Ω , (9.1)

where u is the solution to (6.21), SΩ and DΩ are the single and double layer
potentials for the Lamé system on ∂Ω.

Theorem 9.1 For x ∈ IRd \Ω,

H[g](x) = −
d∑

j=1

d∑

|α|=1

d+1−|α|∑

|β|=1

ε|α|+|β|+d−2

α!β!
(∂αUj)(z)∂βΓ(x − z)M j

αβ

+O(
ε2d

|x|d−1
) ,

(9.2)

where U = (U1, . . . , Ud) is the background solution, i.e., the solution to (6.13),
M j

αβ are the elastic moment tensors associated with B, and Γ is the Kelvin
matrix of fundamental solutions corresponding to the Lamé parameters (λ, µ).

Proof. Since |∇Γ(x − y)| = O(|x|1−d) as |x| → ∞ for each y in a fixed
bounded set, substituting (8.14) into (9.1) yields

H. Ammari and H. Kang: LNM 1846, pp. 159–173, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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H[g](x) = −SΩ(g)(x) + DΩ(U|∂Ω)(x)

−
d∑

j=1

d∑

|α|=1

d+1−|α|∑

|β|=1

ε|α|+|β|+d−2

α!β!
(∂αUj)(z)DΩ

(
∂β

z N(·, z)
)
(x)M j

αβ

+O(
ε2d

|x|d−1
) .

But ∂U/∂ν = g on ∂Ω. Therefore, it follows from (6.8) that

−SΩ(g)(x) + DΩ(U|∂Ω)(x) = 0 for x ∈ IRd \Ω .

From (6.9) and (6.37), we now obtain

DΩ

(
N(·, z)

)
|+(x)=(−1

2
I +KΩ)(N(·, z))(x)=Γ(x− z) , x ∈ ∂Ω , modulo Ψ .

By DΩ

(
N(·, z)

)
(x) = O(|x|1−d) and Γ(x− z)−Γ(z) = O(|x|1−d) as |x| → ∞,

we have the identity

DΩ

(
N(·, z)

)
(x) = Γ(x − z) − Γ(z) , x ∈ IRd \Ω ,

from which we conclude that

DΩ

(
∂β

z N(·, z)
)
(x) = ∂β

z DΩ

(
N(·, z)

)
(x) = ∂β

z Γ(x− z) , |β| ≥ 1 ,

and hence (9.2) is immediate. This completes the proof. ��

If g = ∂U/∂ν|∂Ω where U is linear, then ∂αU = 0 if |α| > 1 and therefore,

H[g](x) = −
d∑

j=1

∑

|α|=1

d∑

|β|=1

ε|β|+d−1

β!
(∂αUj)(z)∂βΓ(x− z)M j

αβ +O(
ε2d

|x|d−1
) .

Since ∂βΓ(x − z) = O(|x|−d+2−|β|) as |x| → ∞ if |β| ≥ 1, we get

H[g](x) = −εd
d∑

j=1

∑

|α|=1

∑

|β|=1

(∂αUj)(z)∂βΓ(x − z)M j
αβ +O(

εd+1

|x|d )

+ O(
ε2d

|x|d−1
) ,

or equivalently, for k = 1, . . . , d,

Hk[g](x) = −εd
d∑

i,j,p,q=1

(∂iUj)(z)∂pΓkq(x− z)mij
pq +O(

εd+1

|x|d )

+ O(
ε2d

|x|d−1
) .

(9.3)
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Since ∂pΓkq(x− z) = ∂pΓkq(x) +O(|x|d), we obtain from (9.3) that

Hk[g](x) = −εd
d∑

i,j,p,q=1

(∂iUj)(z)∂pΓkq(x)mij
pq +O(

εd

|x|d ) +O(
ε2d

|x|d−1
) . (9.4)

For a general g, we have the following formula:

Hk[g](x) = −εd
d∑

i,j,p,q=1

(∂iUj)(z)∂pΓkq(x− z)mij
pq +O(

εd+1

|x|d−1
) ,

from which the following expansion is obvious:

Hk[g](x) = −εd
d∑

i,j,p,q=1

(∂iUj)(z)∂pΓkq(x)mij
pq +O(

εd

|x|d ) +O(
εd+1

|x|d−1
) . (9.5)

Finally, (9.4) and (9.5) yield the following far-field relations.

Theorem 9.2 If |x| = O(ε−1), then, for k = 1, . . . , d,

|x|d−1Hk[g](x) = −εd|x|d−1
d∑

i,j,p,q=1

(∂iUj)(z)∂pΓkq(x)mij
pq . (9.6)

Moreover, if U is linear, then for all x with |x| = O(ε−d),

|x|d−1Hk[g](x) = −εd|x|d−1
d∑

i,j,p,q=1

(∂iUj)(z)∂pΓkq(x)mij
pq . (9.7)

Both identities hold modulo O(ε2d).

Theorem 9.3 (Reconstruction of EMT) For u, v = 1, . . . , d, let

guv :=
∂

∂ν

(
xuev + xveu

2

) ∣
∣
∣
∣
∂Ω

,

and define

huv
kl := lim

t→∞ td−1Hk[guv](tel), k, l, u, v = 1, . . . , d . (9.8)

Then the entries muv
kl , u, v, k, l = 1, . . . , d, of the EMT can be recovered, mod-

ulo O(εd), as follows: for u, v, k, l = 1, . . . , d,

εdmuv
kl =






−2ωdµ(λ+ 2µ)
λ+ (d− 2)µ



λ+ µ

µ

d∑

j=1

huv
jj + huv

kk





if k = l ,

−ωd(λ+ 2µ)huv
kl if k �= l ,

(9.9)

modulo O(ε2d), where ωd = 2π if d = 2 and ωd = 4π if d = 3.



162 9 Detection of Inclusions

Proof. Easy computations show that

∂pΓkq(x) =
A

ωd

δkqxp

|x|d − B

ωd

δkpxq + δpqxk

|x|d +
dB

ωd

xkxqxp

|x|d+2
. (9.10)

If x = tel, t ∈ IR, l = 1, . . . , d, then

∂pΓkq(tel) =
1

ωdtd−1

[
Aδkqδpl −B(δkpδql + δklδpq) + dBδklδqlδpl

]

: =
1

ωdtd−1
eklpq . (9.11)

The background solution U corresponding to guv is given by U(x) =
1
2 (xuev + xveu) and hence

∂iUj(z) =
1
2
(δiuδjv + δivδju) . (9.12)

Therefore the right-hand side of (9.7) equals

− εd

2ωd

d∑

i,j,p,q=1

(δiuδjv + δivδju)eklpqm
ij
pq = − εd

ωd

d∑

p,q=1

eklpqm
uv
pq .

The last equality is valid because of the symmetry of the EMT, in particular,
muv

pq = mvu
pq . It then follows from (9.7) that if t = O(ε−1), then, modulo

O(ε2d),

td−1Hk[guv](tel) =






− εd

ωd

[

(A+ (d− 2)B)muv
kk −B

∑

i�=k

mvu
ii

]

if k = l ,

− εd

ωd
(−B +A)muv

kl if k �= l .

(9.13)
By solving (9.13) for mij

pq, we obtain (9.9). This completes the proof. ��

Once we determine the EMT εdmij
pq associated with D, then we can esti-

mate the size of D by Corollary 7.7.

Theorem 9.4 (Size estimation) For i �= j,

|D| ≈
∣
∣
∣
∣
µ+ µ̃

µ(µ− µ̃)

∣
∣
∣
∣ |ε

dmij
ij |

if µ̃ is known. If µ̃ is unknown, then | (µ+ µ̃)/(µ(µ− µ̃)) | is assumed to be
1/µ.
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9.2 Representation of the EMT’s by Ellipses

Suppose d = 2. As in the electrostatic case, the reconstructed EMT carries an
information about the inclusion other than the size. In order to visualize this
information, we now describe a method to find an ellipse which represents the
reconstructed EMT in the two-dimensional case.

For an ellipse D centered at the origin, let mij
pq(D) be the EMT associated

with D. Let D̂ be the ellipse of the form

D̂ :
x2

a2
+
y2

b2
= 1

such that
D = Rθ(D̂) ,

for some θ. Then by Theorem 7.14, mij
pq are determined by θ, |D|, and m

defined by (7.46).
Let M ij

pq, i, j, p, q = 1, 2, be the EMT determined by the method of the
previous section. Our goal is to find an ellipse D so that

mij
pq(D) = M ij

pq, i, j, p, q = 1, 2 . (9.14)

Observe that the collection of two-dimensional EMT’s has six degrees of free-
dom while the collection of ellipses has only three. So the equation (9.14) may
not have a solution. Thus instead we seek to find an ellipse D so that mij

pq(D)
best fits M ij

pq for i, j, p, q = 1, 2.1 We can achieve this goal in the following
steps.

Representation by ellipses with knowledge of (λ̃, µ̃). Suppose that the
Lamé constants (λ̃, µ̃) of the inclusion D are known.

Step 1: First we set a tolerance τ . If both |M11
12 +M12

22 | and |M11
11 −M22

22 | are
smaller than τ , then represent the EMT by the disk of the size found in
the previous section. If either |M11

12 +M12
22 | or |M11

11 −M22
22 | is larger than

τ , then first find the angle of rotation θ by solving (7.41), namely,

M11
12 +M12

22

M11
11 −M22

22

=
1
2

tan 2θ , 0 ≤ θ <
π

2
. (9.15)

Step 2: We then compute M̂ ij
pq by reversing the rotation by θ found in (9.15)

using formula (7.37). Since it suffices to replace rij with (−1)i+jrij in
(7.37), we get

M̂ ij
pq =

2∑

u,v=1

2∑

k,l=1

(−1)i+j+u+v+k+l+p+qrpurqvrikrjlM
kl
uv , (9.16)

1 It would be interesting and useful to find a class of domains that can represent
the reconstructed EMT in a unique and canonical way.
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where (
r11 r12
r21 r22

)

=
(

cos θ − sin θ
sin θ cos θ

)

.

Step 3: The ideal next step would be to use (7.51) and (7.58) for finding |D|
and m that produce the entries m̂ij

pq that minimize
∣
∣m̂11

11 − M̂11
11

∣
∣+
∣
∣m̂22

22 − M̂22
22

∣
∣+
∣
∣m̂11

22 − M̂11
22

∣
∣+
∣
∣m̂12

12 − M̂12
12

∣
∣ . (9.17)

But it is not so clear how to minimize (9.17) since m̂ij
pq is a nonlinear

function ofm, defined by (7.46), and |D|. So we propose a different method
to find |D| and m.
The relation (7.39) suggests that 2(m̂11

22 + 2m̂12
12) − (m̂11

11 + m̂22
22) carries

an information on the size of m, the ratio of long and short axes. On the
other hand, (7.35) shows that m12

12 carries an information on |D|, the size
of D. So, we solve

2(m̂11
22 + 2m̂12

12) − (m̂11
11 + m̂22

22) = 2(M̂11
22 + 2M12

12 ) − (M11
11 + M̂22

22 )

m̂12
12 = M̂12

12 ,
(9.18)

using (7.51) and (7.58). Numerical tests show that (9.18) may have mul-
tiple solutions. Among the solutions found by solving (9.18), we choose a
one which minimizes (9.17).

Representation by ellipses without knowledge of (λ̃, µ̃). Suppose that
the Lamé constants (λ̃, µ̃) of the inclusion D are unknown. Then Step 1 and
Step 2 are the same as before. Instead of Step 3, we use Step 3′.

Step 3′: If the reconstructed M ij
pq is negative-definite on symmetric matrices,

then µ̃ < µ by Theorem 7.6. So, set λ̃ = µ̃ = 0 and solve (9.18) for
m and |D| using (7.66). If the reconstructed M ij

pq is positive-definite on
symmetric matrices, then set µ̃ = ∞ and solve (9.18) for m and |D| using
(7.63). Among the solutions found by solving (9.18), we choose a one which
minimizes (9.17).

9.3 Detection of the Location

Having found εdmuv
kp , we now proceed to find the location z of D. We propose

two methods, one using only linear solutions and the other using quadratic
solutions.

Detection of the location – Linear method. In view of (9.3) and (9.12),
we have

−εd
d∑

p,q=1

∂pΓkq(x − z)muv
pq = Hk[guv](x) +O(

εd+1

|x|d ) +O(
ε2d

|x|d−1
) , (9.19)



9.3 Detection of the Location 165

for k, u, v = 1, . . . , d. Sincemuv
pq = mvu

qp , p, q, u, v = 1, . . . , d, we can symmetrize
(9.19) to obtain

− ε
d

2

d∑

p,q=1

[

∂pΓkq(x− z) + ∂qΓkp(x− z)
]

muv
pq

= Hk[guv](x) +O(
εd+1

|x|d ) +O(
ε2d

|x|d−1
) .

(9.20)

Let V be the space of d× d symmetric matrices and define a linear transform
P on V by

P ((apq)) = (
d∑

p,q=1

apqε
dmuv

pq ) .

Then by Theorem 7.6, P is invertible on V . Let (nij
pq) be the matrix for P−1

on V , namely,

P−1((apq)) =
( d∑

p,q=1

apqn
ij
pq

)
, (apq) ∈ V . (9.21)

It then follows from (9.20) that

−1
2

[

∂pΓkq(x− z) + ∂qΓkp(x − z)
]

=
d∑

i,j=1

Hk[gij ](x)n
pq
ij +O(

ε

|x|d ) +O(
εd

|x|d−1
) , k = 1, . . . , d .

(9.22)

Observe from (9.10) that

d∑

p=1

∂pΓkp(x − z) =
(−B +A)

ωd

xk − zk

|x− z|d =
1

ωd(2µ+ λ)
xk − zk

|x− z|d ,

for k = 1, . . . , d. Hence we obtain from (9.22) that

xk − zk

|x− z|d = −ωd(2µ+ λ)
d∑

i,j=1

Hk[gij ](x)
d∑

p=1

npp
ij +O(

ε

|x|d )

+O(
εd

|x|d−1
) .

(9.23)

Multiplying both sides of (9.23) by |x|d−1, we arrive at the following formula.
If |x| = O(ε−d+1), then

xk − zk

|x− z| = −ωd(2µ+ λ)|x|d−1
d∑

i,j=1

Hk[gij ](x)
d∑

p=1

npp
ij +O(εd) , (9.24)
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for k = 1, . . . , d. Formula (9.24) says that we can recover (xk − zk)/|x− z|,
k = 1, . . . , d, from Hk[gij ].

We now use an idea from Theorem 5.2 to recover the center z from
(x− z)/|x− z|. Fix k and freeze xl, l �= k, so that

∑
l �=k |xl| = O(ε−d+1).

Then consider

ωd(2µ+ λ)|x|d−1
d∑

i,j=1

Hk[gij ](x)
d∑

p=1

npp
ij

as a function of xk. In fact, for

x = xkek +
∑

l �=k

xlel ,

define

Φk(xk) = ωd(2µ+ λ)|x|d−1
d∑

i,j=1

Hk[gji](x)
d∑

p=1

npp
ij . (9.25)

We then find the unique zero of Φk, say z∗k and therefore the point (z∗1 , . . . , z
∗
d)

is the center z within a precision of O(εd).

Detection of the location – Quadratic method. This method uses the
relation (9.6). In view of (9.6) and (9.11), we get

td−1Hk[g](tel) = − 1
ωd

d∑

i,j,p,q=1

(∂iUj)(z)eklpqε
dmij

pq , modulo O(εd+1) .

(9.26)
Since mij

pq = mij
qp, we get

d∑

i,j,p,q=1

(∂iUj)(z)eklpqε
dmij

pq =
1
2

d∑

p,q=1

(eklpq + eklqp)
d∑

i,j=1

(∂iUj)(z)εdmij
pq .

Since eklpq + eklqp = elkpq + elkqp, we can define a linear transform T on V by

T ((apq)) :=
1
2

(
d∑

p,q=1

(eklpq + eklqp)apq

)

.

We claim that T is invertible. To prove this suppose that T ((apq))kl = 0,
k, l = 1, . . . , d. If k = l, then

(A+ (d− 1)B)akk +
∑

p�=k

app = 0 , k = 1, . . . , d .

Since A+ (d− 1)B �= −1, we get akk = 0, k = 1, . . . , d. On the other hand, if
k �= l, then
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(−A+B)(akl + alk) = 0 ,

and hence akl = 0 since (apq) is symmetric. Therefore (apq)d
p,q=1 = 0 and T is

invertible on V .
It then follows from (9.26) that

−
d∑

i,j=1

(∂iUj)(z)εdmij
pq = ωdT

−1(td−1Hk[g](tel))pq , modulo O(εd+1) .

(9.27)
We then apply second-order homogeneous solutions for U. In fact, in the
two-dimensional case, take

U(x) = (2x1x2, x
2
1 − x2

2) ,

and g = ∂U/∂ν. Then using (9.27), we can determine (∂iUj)(z), thus z, from
the elastic moment tensor mij

pq and the limit value of Hk[g] at t→ ∞. In the
three-dimensional case, we apply two homogeneous polynomials:

U(x) = (2x1x2, x
2
1 − x2

2, 0), (2x1x3, 0, x2
1 − x2

3) .

9.4 Numerical Results

In this section we summarize the algorithms described in detail in previous
sections and show some results of numerical experiments. The first algorithm
is to identify a disk which represents the reconstructed EMT by using (7.7).
We call this algorithm the disk identification algorithm. The second one is
to find an ellipse which can represent the reconstructed EMT by using the
method described in Sect. 9.2. We call this algorithm the ellipse identification
algorithm. It is worth emphasizing that both of these recovery methods are
non-iterative direct algorithms. We only present them in two dimensions even
though they work in the three-dimensional case. Details of the implementation
of the proposed algorithms can be found in [166]. When comparing these two
algorithms, it turns out that the ellipse reconstruction algorithm performs
far better in estimating the size and orientation of the inclusion. But unlike
the disk reconstruction algorithm, the ellipse reconstruction method requires
Lamé constants not only for the background but also of the inclusion.

The proposed identification algorithms do not rely on a forward solver
while iterative algorithms require a sequence of forward solutions. Solutions
of the elastostatic problem obtained by a second-order finite-difference forward
solver are used only for generation of numerical simulations. In Example 1, ef-
fectiveness and stability of the algorithms for a disk inclusion are numerically
demonstrated. Validity of the asymptotic expansions for the radius and the
centers has been checked under various physical configurations in Example 2.
Example 3 shows that the disk reconstruction algorithm provides pretty good
disk approximations even for domains with non-circular inclusions. Example 4
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shows that the ellipse recovery method gives perfect reconstruction results for
elliptic inclusions and fairly good approximations for general domains in the
sense that it provides correct estimations on the major and minor axes, and
the orientation.

Disk reconstruction procedure.

Step R: Compute ε2muv
kl using formulae (9.8),

huv
kl := lim

t→∞ tHk[guv](tel) ,

and muv
kl in (9.9) for u ≤ v, k ≤ l, u ≤ k, and v ≤ l,

ε2muv
kl =






−πµ



 λ

2µ

2∑

j=1

huv
jj + huv

kk



 , k = l ,

−π(λ+ µ)huv
kl , k �= l .

Then the computed radius is given by

rc =

√
|m12

12|
π

.

Step C1: Compute the matrix (npq
ij )i,j,p,q=1,2, defined in (9.21),

(
2∑

p,q=1

apqn
ij
pq

)

:= P−1((apq)) where P ((apq)) =

(
2∑

p,q=1

apqε
2muv

pq

)

.

Then find the unique zero z∗k, k = 1, 2, defined in (9.25),

Φk(xk) = 2π(µ+ λ)|x|
2∑

i,j=1

Hk[gji](x)
2∑

p=1

npp
ij ,

by Newton’s method with Hk[gji](x) and (∂/∂xk)Hk[gji](x). In the iter-
ation, the other coordinate x2−k is frozen to a constant larger than O(ε−2)
and we just choose x2−k to be 103.

Step C2: Compute the center point z using (9.27):

−
2∑

i,j=1

(∂iUj)(z)ε2mij
pq = 2πT−1(tHk[g](tel))pq ,

where

T (apq) :=
1
2

2∑

p,q=1

(eklpq + eklqp)apq , U(x) = (2x1x2, x
2
1 − x2

2) .
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Fig. 9.1. The dashed-dotted circle represents the solution by the linear method
and the dashed circle by the quadratic method. The right-hand plot shows the
perturbation error due to the random boundary noise.

Example 1: In [166], the following reconstruction procedure is implemented
for two-dimensional domains using Matlab and its performance is tested using
a circular inclusion. The disk is centered at (0.4, 0.2) and is of radius r = 0.2.
The Lamé constants of the disk are (λ̃, µ̃) = (9, 6) while the background Lamé
constants are (λ, µ) = (6, 4). The functions u1,1, u1,2, u2,2, and uq denote the
inhomogeneous solutions with the same boundary values of the corresponding
homogeneous solutions, U1,1 = (2x, 0), U1,2 = (y, x), U2,2 = (0, y), Uq =
(2xy, x2−y2), respectively.

The following table summarizes a computational result of the algorithm
using the forward solutions on a 128×128 mesh. The radius rc is the computed
radius in Step R, (xc

1, y
c
1) is the center obtained by the linear method in

Step C1, and (xc
2, y

c
2) is the one obtained by the quadratic method in Step C2.

(λ, µ) (λ̃, µ̃) (x, y) r rc (xc
1, y

c
1) (xc

2, y
c
2)

(6,4) (9,6) (0.4, 0.2) 0.25 0.3036 (0.4110, 0.1961) (0.3983, 0.1985)

The left-hand diagram in Fig. 9.1 shows the original disk as a solid curve;
the dashed-dotted circle is the reconstructed disk by the linear disk reconstruc-
tion method and the dashed circle is by the quadratic reconstruction method.
In order to check the stability of the algorithm, we add random white noise
to the Neumann and Dirichlet boundary data. Since computational results
for radius and centers have some errors even without noise, we compare the
difference between those with and without noise. We plot the absolute pertur-
bation error of the reconstructed values with respect to white random noise
level measured in the root mean square sense. The right-hand plot in Fig. 9.1
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demonstrates that the algorithm is linearly stable with respect to the random
boundary noise.

Example 2: In this example, we test the disk identification algorithm with
various configurations of disk inclusions and check the validity of the asymp-
totic expansions for the radius in case where the inclusion has finite size much
bigger than 0. The following table and Fig. 9.2 summarize the computational
results for three different locations with two different Lamé parameter config-
urations. The linear and the quadratic methods compute the center quite well
but the radii of the top three cases are about 20% larger than the original
disks and those of the bottom cases are about 30% smaller than the originals.

(λ, µ) (λ̃, µ̃) (x, y) r rc (xc
1, y

c
1) (xc

2, y
c
2)

(6,4) (9.0,6.0) (0.5, 0.1) 0.2 0.2474 (0.5198, 0.0967) (0.4988, 0.1014)
(6,4) (9.0,6.0) (0.2, 0.2) 0.3 0.3638 (0.1999, 0.1999) (0.1962, 0.1982)
(6,4) (9.0,6.0) (-0.3, -0.3) 0.5 0.5931 (-0.2974, -0.2972) (-0.2947, -0.2981)
(6,4) (7.0,4.5) (0.5, 0.1) 0.2 0.1371 (0.5203, 0.0967) (0.4995, 0.1009)
(6,4) (7.0,4.5) (0.2, 0.2) 0.3 0.2029 (0.2003, 0.2003) (0.1969, 0.1977)
(6,4) (7.0,4.5) (-0.3, -0.3) 0.5 0.3366 (-0.3006, -0.3005) (-0.2990, -0.2995)

In order to check the validity of the asymptotic expansion, we compute
the radii by the disk reconstruction method for various combinations of radii
and Lamé parameters while fixing the center of inclusion at (0.4, 0.2). We use
three different computational grids to check the computational accuracy of
our forward and inverse solvers. In Fig. 9.3, the dotted line is used for the
results on 48× 48, the dashed line on 64× 64, and the solid line on 128× 128
grid; the computational results on the three different grids seem to be almost
identical. The figure also shows that the computed radius is not identical but
proportional to the original value. The ratio between the computed and the
original radius is independent of the radius, which is strong evidence of a
missing second-order asymptotic expansion term for the radius. It is worth
noting that the asymptotic expansion of EMT in (9.9) is correct up to O(ε2d),
which gives a valid expression for the radius up to second-order accuracy in
the two-dimensional case.

Example 3 (General domain cases): We now test the disk reconstruction
algorithm with non-circular shape inclusions even though the algorithm has
been derived for circular inclusions. The computational results on the 64× 64
grid show fairly good agreement with their circular approximations. It is also
worth mentioning that (λ0, µ0) = (6, 4), (λ1, µ1) = (9, 6) gives about 20%
bigger results and (λ0, µ0) = (4, 6), (λ1, µ1) = (6, 9) about 50% bigger than
originally, in disk cases shown in Fig. 9.4, therefore the computed results are
bigger than the inclusions, especially for the three lower examples.
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Fig. 9.2. Reconstruction results. Dashed-dotted circles by the linear method and
dashed circles by the quadratic method. The three upper cases have stiff inclusions
with (λ̃, µ̃) = (9, 6), (λ, µ) = (6, 4) and the three lower cases with (λ̃, µ̃) = (6, 4),

(λ, µ) = (9, 6). We use the notation λ0, µ0 for λ, µ and λ1, µ1 for λ̃, µ̃.

We now summarize the ellipse identification algorithm.

Ellipse reconstruction procedure. Let M ij
pq be the reconstructed EMT.

Given a tolerance τ , if both |M11
12 +M12

22 | and |M11
11 −M22

22 | are smaller than
τ , then find the disk of the size found in the previous subsection. If either
|M11

12 +M12
22 | or |M11

11 −M22
22 | is larger than τ , then

(E1): Determine the angle of rotation θ by solving (9.15), namely

M11
12 +M12

22

M11
11 −M22

22

=
1
2

tan 2θ , 0 ≤ θ <
π

2
.

(E2): Using the angle θ found in (E1), solve (9.16) to find M̂ ij
pq:

M̂ ij
pq =

2∑

u,v=1

2∑

k,l=1

(−1)u+k+p+irpurvqrikrljM
kl
uv ,

where (
r11 r12
r21 r22

)

=
(

cos θ − sin θ
sin θ cos θ

)

.
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Fig. 9.3. Computed radius rc on three different computational grids. The dotted
line for 48 × 48, dashed line for 64 × 64, and solid line for 128 × 128 grid coincide
well.
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Fig. 9.4. Reconstruction of general shape inclusion.

(E3): Find |D| and m by solving (9.18):

2(m̂11
22 + 2m̂12

12) − (m̂11
11 + m̂22

22) = 2(M̂11
22 + 2M12

12 ) − (M11
11 + M̂22

22 ) ,

m̂12
12 = M̂12

12 .
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Fig. 9.5. Computed ellipses for various inclusions marked with solid curves. The
centers of dotted ellipses are computed by the linear method and dashed-dotted ones
by the quadratic method.

The relation between |D|,m and m̂ij
pq is given by (7.48), (7.51), and (7.58)

if the Lamé constants (λ̃, µ̃) are known. Otherwise, it is given by (7.63)
(resp. (7.66)) if the reconstructed EMT is negative-definite (resp. positive-
definite).

(E4): Among the solutions in (E3), choose a one which minimizes the quantity
given in (9.17):

∣
∣m̂11

11 − M̂11
11

∣
∣+
∣
∣m̂22

22 − M̂22
22

∣
∣+
∣
∣m̂11

22 − M̂11
22

∣
∣+
∣
∣m̂12

12 − M̂12
12

∣
∣ .

Example 4: In this example, we test the algorithm using the same domains
as in Example 3. Fig. 9.5 shows the reconstructed ellipses when their Lamé
constants (λ̃, µ̃) are known. It is not surprising that the ellipse recovery method
gives perfect size information for the disks and ellipses, as shown in the first
diagram in Fig. 9.5, since the information on the Lamé constants (λ̃, µ̃) is
used.
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Suppose that an electromagnetic medium occupies a bounded domain Ω in
IRd, with a connected Lipschitz boundary ∂Ω. Suppose that Ω contains a
finite number m of small inclusions {Ds}m

s=1, each of the form Ds = δBs + zs,
where Bs, s = 1, . . . ,m, is a Lipschitz bounded domain in IRd containing the
origin2. We assume that the domains {Ds}m

s=1 are separated from each other
and from the boundary. More precisely, we assume that there exists a constant
c0 > 0 such that

|zs − zs′ | ≥ 2c0 > 0 , ∀ s �= s′ and dist(zs, ∂Ω) ≥ 2c0 > 0, ∀ s ,

that δ, the common order of magnitude of the diameters of the inclusions, is
sufficiently small, that these inclusions are disjoint, and that their distance
to IRd \ Ω is larger than c0. Let µ0 and ε0 denote the permeability and the
permittivity of the background medium Ω, and assume that µ0 > 0 and ε0 > 0
are positive constants. Let µs > 0 and εs > 0 denote the permeability and the
permittivity of the s-th inclusion, Ds, which are also assumed to be positive
constants. Introduce the piecewise-constant magnetic permeability

µδ(x) =

{
µ0 , x ∈ Ω \ ∪m

s=1Ds ,

µs , x ∈ Ds, s = 1 . . .m .

If we allow the degenerate case δ = 0, then the function µ0(x) equals the
constant µ0. The piecewise constant electric permittivity, εδ(x), is defined
analogously.

Let the electric field u denote the solution to the Helmholtz equation

∇ · ( 1
µδ

∇u) + ω2εδu = 0 in Ω ,

2 We use δ instead of ε for the small parameter to avoid possible confusion with
the notation for the permittivity.
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with the boundary condition u = f ∈ W 2
1
2
(∂Ω), where ω > 0 is a given

frequency. This problem can be written as





(∆+ ω2ε0µ0)u = 0 in Ω \ ∪m
s=1Ds ,

(∆+ ω2εsµs)u = 0 in Ds , s = 1, . . . ,m ,

1
µs

∂u

∂ν

∣
∣
∣
∣
−
− 1
µ0

∂u

∂ν

∣
∣
∣
∣
+

= 0 on ∂Ds , s = 1, . . . ,m ,

u
∣
∣
− − u

∣
∣
+

= 0 on ∂Ds, s = 1, . . . ,m ,

u = f on ∂Ω .

In this part we are concerned with the detection of unknown electromag-
netic inclusions Ds, s = 1, . . . ,m, by means of a finite number of voltage-to-
current pairs (f, ∂u/∂ν|∂Ω) measured on ∂Ω.

Possible applications of this problem include acoustical sounding of bio-
logical media, underwater acoustics [250], and electromagnetic induction to-
mography for imaging electrical property variations in the earth [262].

The use of the formal equivalence between electromagnetics and linear
acoustics, by term-to-term replacing permittivity and permeability by com-
pressibility and volume density of mass, and the scalar electric field by the
scalar acoustic pressure characteristic of compressional waves inside fluid me-
dia opens up the investigation below to many other applications, being said
that the type of materials and of geometrical configurations investigated and
the range of values that are allowed to be taken by the two sets of parameters
in either discipline may differ considerably in practice.

A number of algorithms have been proposed for the numerical treat-
ment of inverse problems for the above Helmholtz equation. In the design
of such schemes, two fundamental difficulties have to be overcome: nonlinear-
ity and ill-posedness. The existing attempts to solve inverse problems for the
Helmholtz equation include linearized inversion schemes [161, 220, 134, 11],
methods based on nonlinear regularization techniques [179, 54, 103, 130, 107,
135], and a continuation method in frequency [75, 88, 76, 42, 41]. The third
technique is a promising new approach based on recursive linearization on the
frequency that makes use of multi-frequency data.

Following our approach throughout this book, we design efficient and ro-
bust algorithms to reconstruct the location and certain geometric features of
the electromagnetic inclusions Ds.

Results similar to those presented in this part have been obtained in the
context of the full (time-harmonic) Maxwell equations in [31].

Most of the results presented in Part III are from [19] and [20].



10

Well-Posedness

In this chapter, by using the theory of collectively compact operators, we
prove existence and uniqueness of a solution to the Helmholtz equation






(∆+ ω2ε0µ0)u = 0 in Ω \ ∪m
s=1Ds ,

(∆+ ω2εsµs)u = 0 in Ds , s = 1, . . . ,m ,

1
µs

∂u

∂ν

∣
∣
∣
∣
−
− 1
µ0

∂u

∂ν

∣
∣
∣
∣
+

= 0 on ∂Ds , s = 1, . . . ,m ,

u
∣
∣
− − u

∣
∣
+

= 0 on ∂Ds, s = 1, . . . ,m ,

u = f on ∂Ω ,

(10.1)

assuming that

ω2ε0µ0 is not an eigenvalue for the operator −∆ in L2(Ω)
with homogeneous Dirichlet boundary conditions. (10.2)

10.1 Existence and Uniqueness of a Solution

In order to define the natural weak formulation of the problem (10.1), let aδ

denote the sesquilinear form

aδ(u, v) =
∫

Ω

1
µδ

∇u · ∇v − ω2

∫

Ω

εδuv , (10.3)

defined on W 1,2
0 (Ω) ×W 1,2

0 (Ω). Let b be a given conjugate-linear functional
on W 1,2

0 (Ω). Our assumption (10.2) is that the variational problem

a0(u, v) = b(v) for all v ∈ W 1,2
0 (Ω)

has a unique solution. The following lemma from [259] shows that the assump-
tion (10.2) also leads to the unique solvability of (10.1).
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Lemma 10.1 Suppose (10.2) is satisfied, and let aδ, 0 ≤ δ, be the sesquilinear
forms introduced by (10.3). There exists a constant 0 < δ0, such that given
any 0 ≤ δ < δ0, and any bounded, conjugate-linear functional, b, on W 1,2

0 (Ω),
there is a unique u ∈ W 1,2

0 (Ω) satisfying aδ(u, v) = b(v) for all v ∈W 1,2
0 (Ω).

Furthermore, there exists a constant C, independent of δ and b, such that

||u||W 1,2(Ω) ≤ C sup
v∈W 1,2

0 (Ω),||v||W1,2(Ω)=1

|b(v)| .

Proof. In order to prove this lemma it is convenient to introduce a decom-
position of aδ. Pick a fixed positive constant, λ, with λ > ω2, and write aδ as
aδ = Aδ +Bδ, where

Aδ(u, v) =
∫

Ω

1
µδ

∇u · ∇v + (λ− ω2)
∫

Ω

εδuv

and
Bδ(u, v) = −λ

∫

Ω

εδuv .

Suppose (10.2) is satisfied. Then the sesquilinear form Aδ is uniformly contin-
uous and uniformly coercive on W 1,2

0 (Ω) ×W 1,2
0 (Ω). It is also convenient to

introduce a family of bounded linear operators Kδ : W 1,2
0 (Ω) →W 1,2

0 (Ω) by

Aδ(Kδu, v) = Bδ(u, v) = −λ
∫

Ω

εδuv ,

for all u and v in W 1,2
0 (Ω).

Let δn be a sequence converging to zero. We first show that the linear oper-
ators {Kδn} are compact and Kδn converges pointwise to K0 as δn approaches
0. We remind the reader that the operators {Kδn} are collectively compact iff
the set {Kδn(u) : n ≥ 1, u ∈ W 1,2

0 (Ω), ||u||W 1,2(Ω) ≤ 1} is relatively compact
(its closure is compact) in W 1,2

0 (Ω).
Fix u ∈W 1,2

0 (Ω), then

Aδn((Kδn −K0)u, v) = Bδn(u, v) −B0(u, v) +A0(K0u, v) −Aδn(K0u, v) ,

for all v ∈W 1,2
0 (Ω). We easily see that

sup
v∈W 1,2

0 (Ω),||v||W1,2(Ω)=1

|B0(u, v) −Bδn(u, v)| → 0 , (10.4)

as δn → 0. It is also clear that

sup
v∈W 1,2

0 (Ω),||v||W1,2(Ω)=1

|A0(K0u, v) −Aδn(K0u, v)| → 0 , (10.5)

as δn → 0. A combination of (10.4) and (10.5) yields
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sup
v∈W 1,2

0 (Ω),||v||W1,2(Ω)=1

|Aδn((Kδn −K0)u, v)| → 0 ,

as δn → 0. Since Aδn is uniformly coercive on W 1,2
0 (Ω) ×W 1,2

0 (Ω), it follows
now that

||(Kδn −K0)u||W 1,2(Ω) → 0 ,

as δn → 0. This verifies the pointwise convergence of the operators {Kδn}.
Let Kτm(um) be any sequence from the set

{

Kδn(u) : n ≥ 1, u ∈ W 1,2
0 (Ω), ||u||W 1,2(Ω) ≤ 1

}

.

In order to verify the collective compactness of the operators {Kδn} we need
to show that the sequence Kτm(um) contains a convergent subsequence. By
extraction of a subsequence (still referred to as Kτm(um)) we may assume that
either: (1) τm = τ is constant (i.e., independent of m) or: (2) τm → 0 as m→
+∞. We may also assume that um converges weakly to some u∞ ∈ W 1,2

0 (Ω).
We introduce the sequence u′m = um − u∞. Clearly ||u′m||W 1,2(Ω) ≤ 2 and u′m
converges weakly to zero. Since the imbedding W 1,2

0 (Ω) ↪→ L2(Ω) is compact,
this gives that u′m has a subsequence (still referred to as u′m) converging
strongly to zero in L2(Ω). From the definition of Kτm it follows immediately
that

sup
v∈W 1,2

0 (Ω),||v||W1,2(Ω)=1

|Aτm(Kτmu
′
m, v)|= sup

v∈W 1,2
0 (Ω),||v||W1,2(Ω)=1

|Bτm(u′m, v)|

≤ C||u′m||L2(Ω) .

Since Aτm is uniformly coercive and since ||u′m||L2(Ω) → 0, we conclude from
the above estimate that ||Kτmu

′
m||W 1,2(Ω) → 0, which is exactly what we are

aiming at.
We want now to solve the variational problem:

Find u ∈W 1,2
0 (Ω) such that aδ(u, v) = b(v) for all v ∈W 1,2

0 (Ω) . (10.6)

This problem can be rewritten as

Aδ(u, v) +Bδ(u, v) = b(v) for all v ∈W 1,2
0 (Ω) ,

or as
Aδ((I +Kδ)uδ, v) = b(v) for all v ∈W 1,2

0 (Ω) . (10.7)

Since Aδ is uniformly continuous and coercive on W 1,2
0 (Ω), it now follows

that the variational problem (10.7) is equivalent to the problem of finding
u ∈W 1,2

0 (Ω) such that
(I +Kδ)u = Fδ .

Here the function Fδ ∈ W 1,2
0 (Ω) is defined by Aδ(Fδ, v) = b(v) for all v ∈

W 1,2
0 (Ω), and therefore satisfies
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||Fδ||W 1,2(Ω) ≤ C sup
v∈W 1,2

0 (Ω),||v||W1,2(Ω)=1

|b(v)| . (10.8)

By the same arguments as we just went through earlier in this proof, the
original variational problem to find U ∈ W 1,2

0 (Ω) such that a0(U, v) = b(v)
for all v ∈ W 1,2

0 (Ω) is thus equivalent to the problem to find U ∈ W 1,2
0 (Ω)

such that (I +K0)U = F0 with F0 ∈W 1,2
0 (Ω) defined by A0(F0, v) = b(v) for

all v ∈ W 1,2
0 (Ω). The fact that this problem has a unique solution (assump-

tion (10.2)) implies that I + K0 is an invertible operator. For any sequence
δn converging to zero we have already verified that the operators {Kδn} are
collectively compact and converge pointwise to K0. From the theory of collec-
tively compact operators [35] (see Theorem A.4 in Appendix A.3) it follows
that there exists a constant 0 < δ0, such that given any 0 ≤ δ < δ0, the
operator I +Kδ is invertible with

||(I +Kδ)−1Fδ||W 1,2(Ω) ≤ C||Fδ||W 1,2(Ω) (10.9)

for some constant C, independent of δ. It then follows from (10.8) and (10.9)
that the variational problem (10.6) has a unique solution u ∈ W 1,2

0 (Ω) satis-
fying

||u||W 1,2(Ω) ≤ C sup
v∈W 1,2

0 (Ω),||v||W1,2(Ω)=1

|b(v)| .

Thus the proof of Lemma 10.1 is complete. ��
Suppose that there exists a constant c0 > 0 such that

|zs − zs′ | ≥ 2c0 > 0 , ∀ s �= s′ and dist(zs, ∂Ω) ≥ 2c0 > 0, ∀ s . (10.10)

Using the above lemma we can show as in [259] that the following holds.

Proposition 10.2 Suppose (10.10) and (10.2) are satisfied. There exists 0 <
δ0 such that, given an arbitrary f ∈ W 2

1
2
(∂Ω), and any 0 < δ < δ0, the

boundary value problem (10.1) has a unique weak solution u in W 1,2(Ω). The
constant δ0 depends on the domains {Bs}m

s=1, Ω, the constants {µs, εs}m
s=0,

and c0, but is otherwise independent of the points {zs}m
s=1. Moreover, let U

denote the unique weak solution to the boundary value problem:
{

(∆+ ω2ε0µ0)U = 0 in Ω ,

U = f on ∂Ω .

There exists a constant C, independent of δ and f , such that

||u− U ||W 1,2(Ω) ≤ Cδ
d
2 ||f ||W 2

1
2
(∂Ω) .

The constant C depends on the domains {Bs}m
s=1, Ω, the constants {µs, εs}m

s=0,
and c0, but is otherwise independent of the points {zs}m

s=1.
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Proof. The function u− U is in W 1,2
0 (Ω), and for any v ∈W 1,2

0 (Ω)

aδ(u− U, v) =
∫

Ω

1
µδ

∇(u − U) · ∇v − ω2

∫

Ω

εδ(u− U)v

=
m∑

s=1

∫

δBs+zs

[

(
1
µ0

− 1
µs

)∇U · ∇v + ω2(εs − ε0)Uv
]

.

Next ∣
∣
∣
∣

∫

δBs+zs

[

(
1
µ0

− 1
µs

)∇U · ∇v + ω2(εs − ε0)Uv
] ∣
∣
∣
∣

is bounded by
C||U ||W 1,2(δBs+zs)||v||W 1,2(Ω) .

Since the inclusions are away from the boundary ∂Ω, standard elliptic regu-
larity results give that

||U ||W 1,∞(δBs+zs) ≤ C||U ||W 1,2(Ω) ≤ C||f ||W 2
1
2
(∂Ω) ,

and so

||U ||W 1,2(δBs+zs) ≤ ||U ||W 1,∞(δBs+zs)δ
d
2 |Bs|

1
2 ≤ Cδ

d
2 ||f ||W 2

1
2
(∂Ω) .

From Lemma 10.1 it then follows immediately that

||u− U ||W 1,2(Ω) ≤ Cδ
d
2 ||f ||W 2

1
2
(∂Ω) ,

exactly as desired. ��
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Representation of Solutions

In this chapter we derive representation formulae for the solution to the trans-
mission problem

∇ · ( 1
µδ

∇u) + ω2εδu = 0 in Ω , (11.1)

similar to (2.17) and (2.19).

11.1 Preliminary Results

We begin this chapter by deriving the outgoing fundamental solution to the
Helmholtz equation. We refer to the books of Colton and Kress [90], [91] and
the one of Nédélec [224] for detailed treatments of the Helmholtz equation,
emphasizing existence and uniqueness results for the exterior problem.

Let Ω be a bounded domain in IRd, d = 2 or 3, with a connected Lipschitz
boundary, a permeability equal to µ0 > 0, and a permittivity equal to ε0 > 0.
Consider a bounded domain D ⊂⊂ Ω with a connected Lipschitz boundary,
a permeability 0 < µ �= µ0 < +∞, and a permittivity 0 < ε �= ε0 < +∞. Let
k0 := ω

√
ε0µ0 and k := ω

√
εµ, where ω > 0 is a given frequency.

A fundamental solution Γk(x) to the Helmholtz operator ∆+ k2 in IRd is
a solution (in the sense of distributions) of

(∆+ k2)Γk = δ0 , (11.2)

where δ0 is the Dirac mass at 0. Solutions are not unique, since we can add
to a solution any plane wave (of the form eikθ·x, θ ∈ IRd : |θ| = 1) or any
combination of such plane waves. We need to specify the behavior of the
solutions at infinity. It is natural to look for radial solutions of the form
Γk(x) = wk(r) that is subject to the extra Sommerfeld radiation condition or
outgoing wave condition

∣
∣
∣
∣
dwk

dr
− ikwk

∣
∣
∣
∣ ≤ Cr−(d+1)/2 at infinity. (11.3)
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If d = 3, equation (11.2) becomes

1
r2

d

dr
r2
dwk

dr
+ k2wk = 0, r > 0 ,

whose solution is

wk(r) = c1
eikr

r
+ c2

e−ikr

r
.

It is easy to check that the Sommerfeld radiation condition (11.3) leads to
c2 = 0 and then (11.2) leads to c1 = −1/(4π).

If d = 2, equation (11.2) becomes

1
r

d

dr
r
dwk

dr
+ k2wk = 0, r > 0 .

This is a Bessel equation whose solutions are not elementary functions. It
is known that the Hankel functions of the first and second kind of order
0, H(1)

0 (kr) and H
(2)
0 (kr), form a basis for the solution space. At infinity

(r → +∞), only H
(1)
0 (kr) satisfies the outgoing radiation condition (11.3).

At the origin (r → 0), H(1)
0 (kr) behaves like H(1)

0 (kr) ∼ (2i/π) log(r). The
following lemma holds.

Lemma 11.1 The outgoing fundamental solution Γk(x) to the operator ∆+
k2 is given by

Γk(x) =






− i

4
H1

0 (k|x|) , d = 2 ,

− eik|x|

4π|x| , d = 3 ,

for x �= 0, where H1
0 is the Hankel function of the first kind of order 0.

Let for x �= 0

Γ0(x) := Γ (x) =






1
2π

log |x| , d = 2 ,

− 1
4π|x| , d = 3 .

For a bounded domain D in IRd and k > 0 let Sk
D and Dk

D be the single
and double layer potentials defined by Γk, that is,

Sk
Dϕ(x) =

∫

∂D

Γk(x− y)ϕ(y) dσ(y) , x ∈ IRd ,

Dk
Dϕ(x) =

∫

∂D

∂Γk(x− y)
∂νy

ϕ(y) dσ(y) , x ∈ IRd \ ∂D ,

for ϕ ∈ L2(∂D). Because Γk − Γ0 is a smooth function, we can easily prove
from (2.12) and (2.13) that
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∂(Sk
Dϕ)
∂ν

∣
∣
∣
∣
±

(x) =
(

± 1
2
I + (Kk

D)∗
)

ϕ(x) a.e. x ∈ ∂D , (11.4)

(Dk
Dϕ)

∣
∣
∣
∣
±

(x) =
(

∓ 1
2
I + Kk

D

)

ϕ(x) a.e. x ∈ ∂D , (11.5)

for ϕ ∈ L2(∂D), where Kk
D is the operator defined by

Kk
Dϕ(x) = p.v.

∫

∂D

∂Γk(x− y)
∂νy

ϕ(y)dσ(y) , (11.6)

and (Kk
D)∗ is the L2-adjoint of Kk

D, that is,

(Kk
D)∗ϕ(x) = p.v.

∫

∂D

∂Γk(x− y)
∂νx

ϕ(y)dσ(y) . (11.7)

The singular integral operators Kk
D and (Kk

D)∗ are bounded on L2(∂D).
We will need the following important result from the theory of the

Helmholtz equation. For its proof we refer to [91] (Lemma 2.11).

Lemma 11.2 (Rellich’s lemma) Let R0 > 0 and BR(0) = {|x| < R}. Let
u satisfy the Helmholtz equation ∆u+k2

0u = 0 for |x| > R0. Assume, further-
more, that

lim
R→+∞

∫

∂BR(0)

|u(x)|2 dσ(x) = 0 .

Then, u ≡ 0 for |x| > R0.

Note that the assertion of this lemma does not hold if k0 is imaginary or
k0 = 0.

Now we can prove the following uniqueness result.

Lemma 11.3 Suppose d = 2 or 3. Let D be a bounded Lipschitz domain in
IRd. Let u ∈ W 1,2

loc (IRd \D) satisfy





∆u+ k2
0u = 0 in IRd \D ,

∣
∣
∣
∣
∂u

∂|x| − ik0u

∣
∣
∣
∣ = O

(

|x|−(d+1)/2

)

as |x| → +∞ uniformly in
x

|x| ,

�
∫

∂D

u
∂u

∂ν
dσ = 0 .

Then, u ≡ 0 in IRd \D.

Proof. Let BR(0) = {|x| < R}. For R large enough, D ⊂ BR(0). Notice
first that by multiplying ∆u + k2

0u = 0 by u and integrating by parts over
BR(0) \D we arrive at

�
∫

∂BR(0)

u
∂u

∂ν
dσ = 0 ,
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since
�
∫

∂D

u
∂u

∂ν
dσ = 0 .

But

�
∫

∂BR(0)

u

(
∂u

∂ν
− ik0u

)

dσ = −k0

∫

∂BR(0)

|u|2 .

Applying the Cauchy–Schwarz inequality,
∣
∣
∣
∣�
∫

∂BR(0)

u

(
∂u

∂ν
−ik0u

)

dσ

∣
∣
∣
∣ ≤
(∫

∂BR(0)

|u|2
)1/2(∫

∂BR(0)

∣
∣
∣
∣
∂u

∂ν
−ik0u

∣
∣
∣
∣

2

dσ

)1/2

and using the Sommerfeld radiation condition
∣
∣
∣
∣
∂u

∂|x| − ik0u

∣
∣
∣
∣ = O

(

|x|−(d+1)/2

)

as |x| → +∞ ,

we get
∣
∣
∣
∣�
∫

∂BR(0)

u

(
∂u

∂ν
− ik0u

)

dσ

∣
∣
∣
∣ ≤

C

R

(∫

∂BR(0)

|u|2
)1/2

,

for some positive constant C independent of R. Consequently, we obtain that
(∫

∂BR(0)

|u|2
)1/2

≤ C

R
,

which indicates by the Rellich’s Lemma that u ≡ 0 in IRd \BR(0). Hence, by
the unique continuation property for ∆+ k2

0 , we can conclude that u ≡ 0 up
to the boundary ∂D. This finishes the proof. ��

11.2 Representation Formulae

We now present two representations of the solution of (11.8) similar to the
representation formula (2.39) for the transmission problem for the harmonic
equation. Let f ∈ W 2

1
2
(∂Ω), and let u and U denote the solutions to the

Helmholtz equations





∇ · ( 1
µδ

∇u) + ω2εδu = 0 in Ω ,

u = f on ∂Ω ,
(11.8)

and {
∆U + ω2ε0µ0U = 0 in Ω ,

U = f on ∂Ω .
(11.9)

The following theorem is of importance to us for establishing our repre-
sentation formulae.
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Theorem 11.4 Suppose that k2
0 is not a Dirichlet eigenvalue for −∆ on D.

For each (F,G) ∈ W 2
1 (∂D) × L2(∂D), there exists a unique solution (f, g) ∈

L2(∂D) × L2(∂D) to the system of integral equations





Sk
Df − Sk0

D g = F

1
µ

∂(Sk
Df)
∂ν

∣
∣
∣
∣
−
− 1
µ0

∂(Sk0
D g)
∂ν

∣
∣
∣
∣
+

= G
on ∂D . (11.10)

Furthermore, there exists a constant C independent of F and G such that

‖f‖L2(∂D) + ‖g‖L2(∂D) ≤ C

(

‖F‖W 2
1 (∂D) + ‖G‖L2(∂D)

)

, (11.11)

where in the three-dimensional case the constant C can be chosen indepen-
dently of k0 and k if k0 and k go to zero.

Proof. We only give the proof for d = 3 and µ0 �= µ leaving the general case
to the reader. Let X := L2(∂D)×L2(∂D) and Y := W 2

1 (∂D)×L2(∂D), and
define the operator T : X → Y by

T (f, g) :=
(

Sk
Df − Sk0

D g,
1
µ

∂(Sk
Df)
∂ν

∣
∣
∣
∣
−
− 1
µ0

∂(Sk0
D g)
∂ν

∣
∣
∣
∣
+

)

.

We also define T0 by

T0(f, g) :=
(

S0
Df − S0

Dg,
1
µ

∂(S0
Df)
∂ν

∣
∣
∣
∣
−
− 1
µ0

∂(S0
Dg)
∂ν

∣
∣
∣
∣
+

)

.

We can easily see that Sk0
D −S0

D : L2(∂D) →W 2
1 (∂D) is a compact operator,

and so is ∂
∂νS

k0
D |± − ∂

∂νS0
D|± : L2(∂D) → L2(∂D). Therefore, T − T0 is a

compact operator from X into Y . It can be proved that T0 : X → Y is
invertible. In fact, a solution (f, g) of the equation T0(f, g) = (F,G) is given
by

f = g + (S0
D)−1(F )

g =
µ0µ

µ0 − µ
(λI + (K0

D)∗)−1

(

G+
1
µ

(
1
2
I − (K0

D)∗)((S0
D)−1(F ))

)

,

where λ = (µ+ µ0)/(2(µ− µ0)). Recall now that the invertibility of S0
D and

λI+(K0
D)∗ was proved in Theorems 2.8 and 2.13. Thus we see, by the Fredholm

alternative, that it is enough to prove that T is injective.
Suppose that T (f, g) = 0. Then the function u defined by

u(x) :=

{
Sk0

D g(x) if x ∈ IRd \D ,

Sk
Df(x) if x ∈ D ,



190 11 Representation of Solutions

is the unique solution of the transmission problem (11.8) with Ω replaced
by IRd and the Dirichlet boundary condition replaced by the Sommerfeld
radiation condition

∣
∣
∣
∣
∂u

∂|x| (x) − ik0u(x)
∣
∣
∣
∣ = O(|x|−(d+1)/2) , |x| → ∞ .

Using the fact that
∫

∂D

∂u

∂ν

∣
∣
∣
∣
+

ū dσ =
µ0

µ

∫

∂D

∂u

∂ν

∣
∣
∣
∣
−
ū dσ =

µ0

µ

∫

D

(|∇u|2 − k2|u|2) dx ,

we find that

�
∫

∂D

∂u

∂ν

∣
∣
∣
∣
+

ū dσ = 0 ,

which gives, by applying Lemma 11.3, that u ≡ 0 in IRd \D. Now u satisfies
(∆ + k2)u = 0 in D and u = ∂u/∂ν = 0 on ∂D. By the unique continuation
property of ∆+k2, we readily get u ≡ 0 in D, and hence in IRd. In particular,
Sk0

D g = 0 on ∂D. Since (∆ + k2
0)Sk0

D g = 0 in D and k2
0 is not a Dirichlet

eigenvalue for −∆ on D, we have Sk0
D g = 0 in D, and hence in IRd. It then

follows from the jump relation (11.4) that

g =
∂(Sk0

D g)
∂ν

∣
∣
∣
∣
+

− ∂(Sk0
D g)
∂ν

∣
∣
∣
∣
−

= 0 on ∂D .

On the other hand, Sk
Df satisfies (∆ + k2)Sk

Df = 0 in IRd \D and Sk
Df = 0

on ∂D. It then follows from Lemma 11.3 (see also Theorem 3.7 of [91]), that
Sk

Df = 0. Then, in the same way as above, we can conclude that f = 0. This
finishes the proof of solvability of (11.10). The estimate (11.11) is an easy
consequence of solvability and the closed graph theorem. Finally, it can be
easily proved in the three-dimensional case that if k0 and k go to zero, then
the constant C in (11.11) can be chosen independently of k0 and k. We leave
the details to the reader. ��

The following representation formula holds.

Theorem 11.5 Suppose that k2
0 is not a Dirichlet eigenvalue for −∆ on D.

Let u be the solution of (11.8) and g := ∂u
∂ν |∂Ω. Define

H(x) := −Sk0
Ω (g)(x) + Dk0

Ω (f)(x) , x ∈ IRd \ ∂Ω , (11.12)

and let (ϕ, ψ) ∈ L2(∂D) × L2(∂D) be the unique solution of





Sk
Dϕ− Sk0

D ψ = H

1
µ

∂(Sk
Dϕ)
∂ν

∣
∣
∣
∣
−
− 1
µ0

∂(Sk0
D ψ)
∂ν

∣
∣
∣
∣
+

=
1
µ0

∂H

∂ν

on ∂D . (11.13)



11.2 Representation Formulae 191

Then u can be represented as

u(x) =

{
H(x) + Sk0

D ψ(x) , x ∈ Ω \D ,

Sk
Dϕ(x) , x ∈ D .

(11.14)

Moreover, there exists C > 0 independent of H such that

‖ϕ‖L2(∂D) + ‖ψ‖L2(∂D) ≤ C

(

‖H‖L2(∂D) + ‖∇H‖L2(∂D)

)

. (11.15)

Proof. Note that u defined by (11.14) satisfies the differential equations and
the transmission condition on ∂D in (11.8). Thus in order to prove (11.14),
it suffices to prove that ∂u/∂ν = g on ∂Ω. Let f := u|∂Ω and consider the
following transmission problem:






(∆+ k2
0)v = 0 in (Ω \D) ∪ (IRd \Ω) ,

(∆+ k2)v = 0 in D ,

v|− − v|+ = 0 ,
1
µ

∂v

∂ν

∣
∣
∣
∣
−
− 1
µ0

∂v

∂ν

∣
∣
∣
∣
+

= 0 on ∂D ,

v|− − v|+ = f,
∂v

∂ν

∣
∣
∣
∣
−
− ∂v

∂ν

∣
∣
∣
∣
+

= g on ∂Ω ,

∣
∣
∣
∣
∂v

∂|x| (x) − ik0v(x)
∣
∣
∣
∣ = O(|x|−(d+1)/2) , |x| → ∞ .

(11.16)

We claim that (11.16) has a unique solution. In fact, if f = g = 0, then we
can show as before that v = 0 in IRd \D. Thus

v =
∂v

∂ν

∣
∣
∣
∣
−

= 0 on ∂D .

By the unique continuation for the operator ∆+ k2, we have v = 0 in D, and
hence v ≡ 0 in IRd. Note that vp, p = 1, 2, defined by

v1(x) =

{
u(x) , x ∈ Ω ,

0 , x ∈ IRd \Ω ,
v2(x) =

{
H(x) + Sk0

D ψ(x) , x ∈ Ω \D ,

Sk
Dϕ(x) , x ∈ D ,

are two solutions of (11.16), and hence v1 ≡ v2. This finishes the proof. ��

Proposition 11.6 For each n ∈ IN there exists Cn independent of D such
that

‖H‖Cn(D) ≤ Cn‖f‖W 2
1
2
(∂Ω) .
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Proof. Let g := ∂u/∂ν|∂Ω. By the definition (11.12), it is easy to see that

‖H‖Cn(D) ≤ C

(

‖g‖W 2
− 1

2
(∂Ω) + ‖f‖W 2

1
2
(∂Ω)

)

,

where the constant C depends only on n and dist(D, ∂Ω). Therefore it is
enough to show that

‖g‖W 2
−1

2
(∂Ω) ≤ C‖f‖W 2

1
2
(∂Ω)

for some C independent of D.
Let ϕ be a C∞-cutoff function which is 0 in a neighborhood of D and 1 in

a neighborhood of ∂Ω. Let v ∈ W 2
1
2
(∂Ω) and define ṽ ∈ W 1,2(Ω) to be the

unique solution to ∆ṽ = 0 in Ω and ṽ = v on ∂Ω. Let 〈 , 〉 1
2 ,− 1

2
denote the

W 2
1
2
−W 2

− 1
2

pairing on ∂Ω. Then

〈v, g〉 1
2 ,− 1

2
=
∫

Ω

∆(ϕu)ṽ dx+
∫

Ω

∇(ϕu) · ∇ṽ dx

=
∫

Ω

∆ϕuṽ dx+ 2
∫

Ω

∇ϕ · ∇uṽ dx− k2
0

∫

Ω

ϕuṽ dx

+
∫

Ω

∇(ϕu) · ∇ṽ dx .

Therefore, it follows from the Cauchy–Schwartz inequality that

|〈v, g〉 1
2 ,− 1

2
| ≤ C‖u‖W 1,2(Ω\D)‖ṽ‖W 1,2(Ω) ≤ C‖u‖W 1,2(Ω\D)‖v‖W 2

1
2
(∂Ω) .

Since v ∈ W 2
1
2
(∂Ω) is arbitrary, we get

‖g‖W 2
− 1

2
(∂Ω) ≤ C‖u‖W 1,2(Ω\D) . (11.17)

Note that the constant C depends only on dist(D, ∂Ω). On the other hand,
since k2

0 is not a Dirichlet eigenvalue for the Helmholtz equation (11.8) in Ω
we can prove that

‖u‖W 1,2(Ω) ≤ C‖f‖W 2
1
2
(∂Ω) ,

where C depends only on ω2, µ0, µ, ε0, and ε. It then follows from (11.17) that

‖g‖W 2
− 1

2
(∂Ω) ≤ C‖f‖W 2

1
2
(∂Ω) .

This completes the proof. ��
We now transform the representation formula (11.14) into the one using

the Green’s function and the background solution U , that is, the solution of
(11.9).
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Let Gk0(x, y) be the Dirichlet Green’s function for ∆ + k2
0 in Ω, i.e., for

each y ∈ Ω, G is the solution of
{

(∆+ k2
0)Gk0(x, y) = δy(x) , x ∈ Ω ,

Gk0(x, y) = 0 , x ∈ ∂Ω .

Then,

U(x) =
∫

∂Ω

∂Gk0(x, y)
∂νy

f(y)dσ(y) , x ∈ Ω .

Introduce one more notation. For a Lipschitz domain D ⊂⊂ Ω and ϕ ∈
L2(∂D), let

Gk0
D ϕ(x) :=

∫

∂D

Gk0(x, y)ϕ(y) dσ(y) , x ∈ Ω .

Our second representation formula is the following.

Theorem 11.7 Let ψ be the function defined in (11.13). Then

∂u

∂ν
(x) =

∂U

∂ν
(x) +

∂(Gk0
D ψ)
∂ν

(x) , x ∈ ∂Ω . (11.18)

To prove Theorem 11.7 we first observe an easy identity. If x ∈ IRd \ Ω
and z ∈ Ω then

∫

∂Ω

Γk0(x− y)
∂Gk0(z, y)

∂νy

∣
∣
∣
∣
∂Ω

dσ(y) = Γk0(x − z) . (11.19)

As a consequence of (11.19), we have
(

1
2
I + (Kk0

Ω )∗
)(

∂Gk0(z, ·)
∂νy

∣
∣
∣
∣
∂Ω

)

(x) =
∂Γk0(x− z)

∂νx
, (11.20)

for all x ∈ ∂Ω and z ∈ Ω.
Our second observation is the following.

Lemma 11.8 If k2
0 is not a Dirichlet eigenvalue for −∆ on Ω, then (1/2) I+

(Kk0
Ω )∗ : L2(∂Ω) → L2(∂Ω) is injective.

Proof. Suppose that ϕ ∈ L2(∂Ω) and
(

(1/2) I + (Kk0
Ω )∗
)

ϕ = 0. Define

u(x) := Sk0
Ω ϕ(x) , x ∈ IRd \Ω .

Then u is a solution of (∆+ k2
0)u = 0 in IRd \Ω, and satisfies the Sommerfeld

radiation condition
∣
∣
∣
∣
∂u

∂|x| − ik0u

∣
∣
∣
∣ = O

(

|x|−(d+1)/2

)

as |x| → +∞ ,
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and the Neumann boundary condition

∂u

∂ν

∣
∣
∣
∣
∂Ω

=
(

1
2
I + (Kk0

Ω )∗
)

ϕ = 0 .

Therefore, by Lemma 11.3, we obtain Sk0
Ω ϕ(x) = 0, x ∈ IRd \ Ω. Since k2

0 is
not a Dirichlet eigenvalue for −∆ on Ω, we can prove that ϕ ≡ 0 in the same
way as before. This completes the proof. ��

With these two observations available we are now ready to prove Theorem
11.7.

Proof of Theorem 11.7. Let g := ∂u/∂ν and g0 := ∂U/∂ν on ∂Ω for conve-
nience. By the divergence theorem, we get

U(x) = −Sk0
Ω (g0)(x) + Dk0

Ω (f)(x) , x ∈ Ω .

It then follows from (11.12) that

H(x) = −Sk0
Ω (g)(x) + Sk0

Ω (g0)(x) + U(x) , x ∈ Ω .

Consequently, substituting (11.14) into the above equation, we see that for
x ∈ Ω

H(x) = −Sk0
Ω

(
∂H

∂ν

∣
∣
∣
∣
∂Ω

+
∂(Sk0

D ψ)
∂ν

∣
∣
∣
∣
∂Ω

)

(x) + Sk0
Ω (g0)(x) + U(x) .

Therefore the jump formula (11.4) yields

∂H

∂ν
= −

(

− 1
2
I + (Kk0

Ω )∗
)(

∂H

∂ν

∣
∣
∣
∣
∂Ω

+
∂(Sk0

D ψ)
∂ν

∣
∣
∣
∣
∂Ω

)

+
(

1
2
I + (Kk0

Ω )∗
)

(g0) on ∂Ω .

(11.21)

By (11.20), we have for x ∈ ∂Ω

∂(Sk0
D ψ)
∂ν

(x) =
∫

∂D

∂Γk0(x− y)
∂νx

ψ(y) dσ(y)

=
(

1
2
I + (Kk0

Ω )∗
)(

∂(Gk0
D ψ)
∂ν

∣
∣
∣
∣
∂Ω

)

(x) . (11.22)

Thus we obtain
(

− 1
2
I + (Kk0

Ω )∗
)(

∂(Sk0
D ψ)
∂ν

∣
∣
∣
∣
∂Ω

)

=
(

1
2
I + (Kk0

Ω )∗
)((

− 1
2
I + (Kk0

Ω )∗
)(

∂(Gk0
D ψ)
∂ν

∣
∣
∣
∣
∂Ω

))

on ∂Ω .
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It then follows from (11.21) that

(
1
2
I + (Kk0

Ω )∗
)(

∂H

∂ν

∣
∣
∣
∣
∂Ω

+
(

− 1
2
I + (Kk0

Ω )∗
)(

∂(Gk0
D ψ)
∂ν

∣
∣
∣
∣
∂Ω

)

− g0

)

= 0

on ∂Ω and hence, by Lemma 11.8, we arrive at

∂H

∂ν

∣
∣
∣
∣
∂Ω

+
(

− 1
2
I + (Kk0

Ω )∗
)(

∂(Gk0
D ψ)
∂ν

∣
∣
∣
∣
∂Ω

)

− g0 = 0 on ∂Ω . (11.23)

By substituting this equation into (11.14), we get

∂u

∂ν
=
∂U

∂ν
−
(

− 1
2
I + (Kk0

Ω )∗
)(

∂(Gk0
D ψ)
∂ν

∣
∣
∣
∣
∂Ω

)

+
∂(Sk0

D ψ)
∂ν

on ∂Ω .

Finally, using (11.22) we conclude that (11.18) holds and the proof is then
complete. ��

Observe that, by (11.4), (11.23) is equivalent to

∂

∂ν

(

H + Sk0
Ω

(
∂(Gk0

D ψ)
∂ν

∣
∣
∣
∣
∂Ω

)

− U

)∣
∣
∣
∣
−

= 0 on ∂Ω .

On the other hand, by (11.19),

Sk0
Ω

(
∂(Gk0

D ψ)
∂ν

∣
∣
∣
∣
∂Ω

)

(x) = Sk0
D ψ(x) , x ∈ ∂Ω .

Thus, by (11.14), we obtain

H(x) + Sk0
Ω

(
∂(Gk0

D ψ)
∂ν

∣
∣
∣
∣
∂Ω

)

(x) − U(x) = 0 , x ∈ ∂Ω .

Then, by the unique continuation for ∆+k2
0 , we obtain the following Lemma.

Lemma 11.9 We have

H(x) = U(x) − Sk0
Ω

(
∂(Gk0

D ψ)
∂ν

∣
∣
∣
∣
∂Ω

)

(x) , x ∈ Ω . (11.24)
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Derivation of Asymptotic Formulae

Suppose that the domain D is of the form D = δB + z, and let u be the
solution of (11.8). The function U is the background solution as before. In
this chapter we derive an asymptotic expansion of ∂u/∂ν on ∂Ω as δ → 0 in
terms of the background solution U . The leading-order term in this asymptotic
formula has been derived in by Vogelius and Volkov in [259] (see also [25]
where the second-order term in the asymptotic expansions of solutions to the
Helmholtz equation is obtained). The proof of our asymptotic expansion is
radically different from the variational ones in [259, 25]. It is based on layer
potential techniques and the decomposition formula (11.14) of the solution to
the Helmholtz equation. For simplicity, although the asymptotic expansions
are valid in the two-dimensional case we only consider d = 3 in what follows.

12.1 Asymptotic Expansion

We first derive an estimate of the form (11.15) with a constant C independent
of δ.

Proposition 12.1 Let D = δB + z and (ϕ, ψ) ∈ L2(∂D) × L2(∂D) be the
unique solution of (11.13). There exists δ0 > 0 such that for all δ ≤ δ0, there
exists a constant C independent of δ such that

‖ϕ‖L2(∂D) + ‖ψ‖L2(∂D) ≤ C

(

δ−1‖H‖L2(∂D) + ‖∇H‖L2(∂D)

)

. (12.1)

Proof. After the scaling x = z + δy, (11.13) takes the form





Skδ
B ϕδ − Sk0δ

B ψδ =
1
δ
Hδ

1
µ

∂(Skδ
B ϕδ)
∂ν

∣
∣
∣
∣
−
− 1
µ0

∂(Sk0δ
B ψδ)
∂ν

∣
∣
∣
∣
+

=
1
δµ0

∂Hδ

∂ν

on ∂B ,
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where ϕδ(y) = ϕ(z+ δy), y ∈ ∂B, etc, and the single layer potentials Skδ
B and

Sk0δ
B are defined by the fundamental solutions Γkδ and Γk0δ, respectively. It

then follows from Theorem 11.4 that for δ small enough the following estimate
holds:

‖ϕδ‖L2(∂B) + ‖ψδ‖L2(∂B) ≤ Cδ−1‖Hδ‖W 2
1 (∂B) ,

for some constant C independent of δ. By scaling back, we obtain (12.1). ��
Let H be the function defined in (11.12). Fix n ∈ IN, define

Hn(x) =
n∑

|i|=0

∂iH(z)
i!

(x − z)i ,

and let (ϕn, ψn) be the unique solution of





Sk
Dϕn − Sk0

D ψn = Hn+1

1
µ

∂(Sk
Dϕn)
∂ν

∣
∣
∣
∣
−
− 1
µ0

∂(Sk0
D ψn)
∂ν

∣
∣
∣
∣
+

=
1
µ0

∂Hn+1

∂ν

on ∂D . (12.2)

Then (ϕ − ϕn, ψ − ψn) is the unique solution of (12.2) with the right-hand
sides defined by H −Hn+1. Therefore, by (12.1), we get

‖ϕ− ϕn‖L2(∂D) + ‖ψ − ψn‖L2(∂D)

≤ C

(

δ−1‖H −Hn+1‖L2(∂D) + ‖∇(H −Hn+1)‖L2(∂D)

)

.
(12.3)

By the definition of Hn+1, we have

‖H −Hn+1‖L2(∂D) ≤ C|∂D|1/2‖H −Hn+1‖L∞(∂D)

≤ C|∂D|1/2δn+2‖H‖Cn+2(D) ,

and
‖∇(H −Hn+1)‖L2(∂D) ≤ C|∂D|1/2δn+1‖H‖Cn+1(D) .

It then follows from (12.3) and Proposition 11.6 that

‖ϕ− ϕn‖L2(∂D) + ‖ψ − ψn‖L2(∂D) ≤ C|∂D|1/2δn+1 . (12.4)

By (11.18), we obtain

∂u

∂ν
(x) =

∂U

∂ν
(x) +

∂(Gk0
D ψn)
∂ν

(x) +
∂(Gk0

D (ψ − ψn))
∂ν

(x) , x ∈ ∂Ω .

Since dist(D, ∂Ω) ≥ c0, we get

sup
x∈∂Ω, y∈∂D

∣
∣
∣
∣
∂Gk0

∂ν
(x, y)

∣
∣
∣
∣ ≤ C
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for some C. Hence, for each x ∈ ∂Ω, we have from (12.4)

∣
∣
∣
∣
∣

∂(Gk0
D (ψ − ψn))
∂ν

(x)

∣
∣
∣
∣
∣
≤
[∫

∂D

∣
∣
∣
∣
∂Gk0(x, y)

∂νx

∣
∣
∣
∣

2

dσ(y)

]1/2

‖ψ − ψn‖L2(∂D)

≤ C|∂D|1/2|∂D|1/2δn+1 ≤ C′δn+d ,

where C and C′ are independent of x ∈ ∂Ω and δ. Thus we conclude that

∂u

∂ν
(x) =

∂U

∂ν
(x) +

∂(Gk0
D ψn)
∂ν

(x) +O(δn+d) , uniformly in x ∈ ∂Ω . (12.5)

For each multi-index i, define (ϕi, ψi) to be the unique solution to





Skδ
B ϕi − Sk0δ

B ψi = xi

1
µ

∂(Skδ
B ϕi)
∂ν

∣
∣
∣
∣
−
− 1
µ0

∂(Sk0δ
B ψi)
∂ν

∣
∣
∣
∣
+

=
1
µ0

∂xi

∂ν

on ∂B . (12.6)

Then, we claim that

ϕn(x) =
n+1∑

|i|=0

δ|i|−1 ∂
iH(z)
i!

ϕi(δ−1(x− z)) ,

ψn(x) =
n+1∑

|i|=0

δ|i|−1 ∂
iH(z)
i!

ψi(δ−1(x− z)) .

In fact, the expansions follow from the uniqueness of the solution to the inte-
gral equation (11.10) and the relation

Sk0
D




n+1∑

|i|=0

δ|i|−1 ∂
iH(z)
i!

ϕi(δ−1(· − z))



 (x)

=
n+1∑

|i|=0

δ|i|
∂iH(z)
i!

(Sk0δ
B ϕi)(δ−1(x− z)) ,

for x ∈ ∂D. It then follows from (12.5) that

∂u

∂ν
(x) =

∂U

∂ν
(x) +

n+1∑

|i|=0

δ|i|−1 ∂
iH(z)
i!

∂

∂ν
Gk0

D (ψi(δ−1(· − z)))(x)

+O(δn+d) ,

(12.7)

uniformly in x ∈ ∂Ω. Note that
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Gk0
D (ψi(δ−1(· − z)))(x) =

∫

∂D

Gk0(x, y)ψi(δ−1(y − z)) dσ(y)

= δd−1

∫

∂B

Gk0(x, δw + z)ψi(w) dσ(w) .

Moreover, for x near ∂Ω, z ∈ Ω, w ∈ ∂B, and sufficiently small δ, we have

Gk0(x, δw + z) =
∞∑

|j|=0

δ|j|

j!
∂j

zGk0(x, z)w
j .

Therefore, we get

Gk0
D (ψi(δ−1(· − z)))(x) =

∞∑

|j|=0

δ|j|+d−1

j!
∂j

zGk0(x, z)
∫

∂B

wjψi(w) dσ(w) .

Define, for multi-indices i and j in INd,

Wij :=
∫

∂B

wjψi(w) dσ(w) . (12.8)

Then we obtain the following theorem from (12.7).

Theorem 12.2 The following pointwise asymptotic expansion on ∂Ω holds:

∂u

∂ν
(x) =

∂U

∂ν
(x) + δd−2

n+1∑

|j|=0

n−|j|+1∑

|i|=0

δ|i|+|j|

i!j!
∂iH(z)

∂∂j
zGk0(x, z)
∂νx

Wij

+O(δn+d) ,

(12.9)

where the remainder O(δd+n) is dominated by Cδd+n‖f‖W 2
1
2
(∂Ω) for some C

independent of x ∈ ∂Ω.

In view of (11.18), we obtain the following expansion:

∂(Gk0
D ψ)
∂ν

(x) = δd−2
n+1∑

|j|=0

n−|j|+1∑

|i|=0

δ|i|+|j|

i!j!
∂iH(z)

∂∂j
zGk0(x, z)
∂νx

Wij

+O(δn+d) .

(12.10)

Observe that ψi, and hence, Wij depends on δ, and so does H . Thus the
formula (12.9) is not a genuine asymptotic formula. However, since it is simple
and has some potential applicability in solving the inverse problem for the
Helmholtz equation, we made a record of it as a theorem.

Observe that by the definition (12.6) of ψi, ‖ψi‖L2(∂B) is bounded, and
hence

|Wij | ≤ Cij , ∀ i, j ,
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where the constant Cij is independent of δ. Since δ is small, we can derive an
asymptotic expansion of (ϕi, ψi) using their definition (12.6). Let us briefly
explain this. Let

Tδ

[
f
g

]

:=






Skδ
B f − Sk0δ

B g

1
µ

∂(Skδ
B f)
∂ν

∣
∣
∣
∣
−
− 1
µ0

∂(Sk0δ
B g)
∂ν

∣
∣
∣
∣
+




 on ∂B ,

and let T0 be the operator when δ = 0. Then the solution (ϕi, ψi) of the
integral equation (12.6) is given by

[
ϕi

ψi

]

=
[

I + T−1
0 (Tδ − T0)

]−1

T−1
0




xi

1
µ0

∂xi

∂ν



 . (12.11)

By expanding Tδ − T0 in a power series of δ, we can derive the expansions
of ψi and Wij . Let, for i, j ∈ INd, (ϕ̂i, ψ̂i) be the leading-order term in the
expansion of (ϕi, ψi). Then (ϕ̂i, ψ̂i) is the solution of the system of the integral
equations






S0
Bϕ̂i − S0

Bψ̂i = xi

1
µ

∂(S0
Bϕ̂i)
∂ν

∣
∣
∣
∣
−
− 1
µ0

∂(S0
Bψ̂i)
∂ν

∣
∣
∣
∣
+

=
1
µ0

∂xi

∂ν

on ∂B . (12.12)

As a simplest case, let us now take n = 1 in (12.9) to find the leading-order
term in the asymptotic expansion of ∂u/∂ν|∂Ω as δ → 0. We first investigate
the dependence of Wij on δ for |i| ≤ 1 and |j| ≤ 1. If |i| ≤ 1, then both sides
of the first equation in (12.12) are harmonic in B, and hence

S0
Bϕ̂i − S0

Bψ̂i = xi in B .

Therefore we get

∂(S0
Bϕ̂i)
∂ν

∣
∣
∣
∣
−
− ∂(S0

Bψ̂i)
∂ν

∣
∣
∣
∣
−

=
∂xi

∂ν
on ∂B .

This identity together with the second equation in (12.12) yields

µ

µ0

∂(S0
Bψ̂i)
∂ν

∣
∣
∣
∣
+

− ∂(S0
Bψ̂i)
∂ν

∣
∣
∣
∣
−

=
(

1 − µ

µ0

)
∂xi

∂ν
.

In view of the relation (11.4), we have

µ

µ0

(
1
2
I + K∗

B

)

ψ̂i −
(

− 1
2
I + K∗

B

)

ψ̂i =
(

1 − µ

µ0

)
∂xi

∂ν
,
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where K∗
B is the operator defined in (11.6) when k = 0. Therefore, we have

ψ̂i = (λI −K∗
B)−1

(
∂xi

∂ν

∣
∣
∣
∣
∂B

)

, (12.13)

where

λ :=
µ
µ0

+ 1

2(1 − µ
µ0

)
=

µ0
µ + 1

2(µ0
µ − 1)

. (12.14)

Here we have used the fact from Theorem 2.8 that the operator λI − K∗
B on

L2(∂B) is invertible. Observe that if |i| = 0, then ψ̂i = 0 and S0
Bϕ̂i = 1. Hence

we obtain ψi = O(δ) and Skδ
B ϕi = 1 + O(δ). Moreover, since Skδ

B ϕi depends
on δ analytically and (∆+ k2δ2)Skδ

B ϕi = 0 in B, we conclude that

ψi = O(δ) and Skδ
B ϕi = 1 +O(δ2) , |i| = 0 . (12.15)

It also follows from (12.13) that if |i| = |j| = 1, then

Wij =
∫

∂B

xj(λI −K∗
B)−1

(
∂yi

∂ν

∣
∣
∣
∣
∂B

)

(x) dσ(x) +O(δ) . (12.16)

The first quantity in the right-hand side of (12.16) is the polarization tensor
Mij as defined in (3.1). In summary, we obtained that

Wij = Mij +O(δ) , |i| = |j| = 1 . (12.17)

Suppose that either i = 0 or j = 0. By (11.4) and (12.6), we have

ψi =
∂(Sk0δ

B ψi)
∂ν

∣
∣
∣
∣
+

− ∂(Sk0δ
B ψi)
∂ν

∣
∣
∣
∣
−

=
µ0

µ

∂(Skδ
B ϕi)
∂ν

∣
∣
∣
∣
−
− ∂xi

∂ν
− ∂(Sk0δ

B ψi)
∂ν

∣
∣
∣
∣
−
. (12.18)

It then follows from the divergence theorem that
∫

∂B

xjψi dσ = −k2δ2
µ0

µ

∫

B

xjSkδ
B ϕi dx+ k2

0δ
2

∫

B

xjSk0δ
B ψi dx (12.19)

+
µ0

µ

∫

∂B

∂xj

∂ν
Skδ

B ϕi dσ −
∫

∂B

∂xj

∂ν
Sk0δ

B ψi dσ .

From (12.19), we can observe the following.

Wij = −k2δ2
µ0

µ
|B| +O(δ3) = −δ2ω2εµ0|B| +O(δ3) , |i| = |j| = 0 ,

(12.20)

Wij = O(δ2) , |i| = 1 , |j| = 0 , (12.21)

Wij = O(δ2) , |i| = 0 , |j| = 1 . (12.22)
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In fact, (12.20) and (12.22) follow from (12.15) and (12.19), and (12.21) im-
mediately follows from (12.19). As a consequence of (12.20), (12.21), (12.22),
and (12.10), we obtain

∂(Gk0
D ψ)
∂ν

(x) = O(δd) , uniformly on x ∈ ∂Ω .

Since the center z is apart from ∂Ω, it follows from (11.24) that

|H(z) − U(z)| + |∇H(z) −∇U(z)| = O(δd) .

We now consider the case |i| = 2 and |j| = 0. In this case, one can show
using (12.18) that

∫

∂B

ψi dσ = −
∫

B

∆xi dx+O(δ2) .

Therefore, if |j| = 0, then

∑

|i|=2

1
i!j!

∂iH(z)Wij = −∆H(z)|B| +O(δ2) = k2
0H(z)|B| +O(δ2) . (12.23)

So (12.9) together with (12.17)-(12.23) yields the following expansion for-
mula of Vogelius-Volkov [259]. In fact, in [259], the formula is expressed in
terms of the free space Green’s function Γk instead of the Green’s function
Gk0 . However, these two formulae are the same, as we can see using the rela-
tion (11.20).

Theorem 12.3 For any x ∈ ∂Ω,

∂u

∂ν
(x) =

∂U

∂ν
(x)

+ δd

(

∇U(z)M
∂∇zGk0(x, z)

∂νx
+ ω2µ0(ε− ε0)|B|U(z)

∂Gk0(x, z)
∂νx

)

(12.24)

+O(δd+1) ,

where M is the polarization tensor defined in (3.1) with λ given by (12.14).

Before returning to (12.9) let us make the following important remark.
The tensors Wij play the same role as the generalized polarization tensors.
As defined in Chap. 3 the GPT’s are given for i, j ∈ INd by

Mij :=
∫

∂B

wj ψ̂i(w) dσ(w) ,

where ψ̂i is defined by (12.12). The following result makes the connection
between Wij and Mij . Its proof is immediate.
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Lemma 12.4 Suppose that ai are constants such that
∑

i

aiw
i is a harmonic

polynomial. Then
∑

i

aiWij →
∑

i

aiMij as δ → 0 .

Observing now that the formula (12.9) still contains ∂iH factors, the re-
maining task is to convert (12.9) to a formula given solely by U and its deriva-
tives. Substitution of (12.10) into (11.24) yields that, for any x ∈ Ω,

H(x) = U(x)

−δd−2
n+1∑

|j|=0

n+1−|j|∑

|i|=0

δ|i|+|j|

i!j!
∂iH(z)Sk0

Ω (
∂∂j

zGk0(x, z)
∂νx

)Wij

+O(δn+d) .

(12.25)

In (12.25) the remainder O(δn+d) is uniform in the Cn-norm on any compact
subset of Ω for any n ∈ IN and therefore

(∂γH)(z) + δd−2
n+1∑

|j|=0

n+1−|j|∑

|i|=0

δ|i|+|j|∂iH(z)Pijγ = (∂γU)(z) +O(δd+n) ,

for all γ ∈ INd with |γ| ≤ n+ 1 where

Pijγ =
1
i!j!

Wij∂
γSk0

Ω (
∂∂j

zGk0(·, z)
∂νx

)
∣
∣
∣
∣
x=z

.

Define the operator Pδ by

Pδ : (wγ)γ∈INd,|γ|≤n 	→
(

wγ + δd−2
n+1∑

|j|=0

n+1−|j|∑

|i|=0

δ|i|+|j|wiPijγ

)

γ∈INd ,|γ|≤n

.

Observe from (12.11) that Pδ can be written as

Pδ = I + δdP1 + . . .+ δn+d−1Pn−1 +O(δn+d) .

Defining as in (4.17) Qp, p = 1, . . . , n− 1, by

(I + δdP1 + . . .+ δn+d−1Pn−1)−1 = I + δdQ1 + . . .+ δn+d−1Qn−1 +O(δn+d) ,

we finally obtain that

((∂iH)(z))i∈INd,|i|≤n+1 = (I+
n∑

p=1

δd+p−1Qp)((∂iU)(z))i∈INd,|i|≤n+1+O(δd+n) ,

which yields the main result of this chapter.
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Theorem 12.5 The following pointwise asymptotic expansion on ∂Ω holds:

∂u

∂ν
(x) =

∂U

∂ν
(x) + δd−2

n+1∑

|j|=0

n+1−|j|∑

|i|=0

δ|i|+|j|

i!j!
×

[(

(I +
n+2−|i|−|j|−d∑

p=1

δd+p−1Qp)(∂γU(z))
)

i

∂∂j
zGk0(x, z)
∂νx

Wij

]

+O(δn+d) ,

where the remainder O(δd+n) is dominated by Cδd+n‖f‖W 2
1
2
(∂Ω) for some C

independent of x ∈ ∂Ω.

When n = d, we have a simpler formula

∂u

∂ν
(x) =

∂U

∂ν
(x) + δd−2

d+1∑

|j|=0

d+1−|j|∑

|i|=0

δ|i|+|j|

i!j!
∂iU(z)

∂∂j
zGk0(x, z)
∂νx

Wij

+O(δ2d) .

(12.26)

Let us now consider the case when there are several well separated in-
clusions. The inclusion D takes the form ∪m

s=1(δBs + zs). The magnetic per-
meability and electric permittivity of the inclusion δBs + zs are µs and εs,
s = 1, . . . ,m. By iterating the formula (12.26) we can derive the following
theorem.

Theorem 12.6 The following pointwise asymptotic expansion on ∂Ω holds:

∂u

∂ν
(x) =

∂U

∂ν
(x)

+δd−2
m∑

s=1

d+1∑

|j|=0

d+1−|j|∑

|i|=0

δ|i|+|j|

i!j!
∂iU(z)

∂∂j
zGk0(x, z)
∂νx

W s
ij +O(δ2d) .

(12.27)

Here W s
ij is defined by (12.8) with B,µ, ε replaced by Bs, µs, εs.

We conclude this chapter by making one final remark. In this chapter, we
only derive the asymptotic formula for the solution to the Dirichlet problem.
However, by the same method, we can derive an asymptotic formula for the
Neumann problem as well.
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Reconstruction Algorithms

Our goal in this chapter is to use the expansion (12.27) for efficiently deter-
mining the locations and/or shapes of the small electromagnetic inclusions
from boundary measurements at a fixed frequency.

Assume that d = 3 only for the sake of simplicity. We develop two algo-
rithms that use plane wave sources for identifying the small electromagnetic
inclusions. We suppose that the boundary condition is given by

f = eik0θ·x ,

where θ is a vector on the unit sphere S2 in IR3, θ · θ = 1. We propose in this
chapter two efficient and robust non-iterative algorithms for reconstructing
the electromagnetic inclusions {Ds}m

s=1 from limited voltage-to-current pairs

(
u = eik0θ·x|∂Ω,

∂u

∂ν
|∂Ω

)
.

The first algorithm, like the variational method in Sect. 5.4, reduces the re-
construction problem of the small inclusions to the calculation of an inverse
Fourier transform. The second one is the MUSIC (standing for MUltiple-
Signal-Classification) algorithm. We explain how it applies to imaging of small
electromagnetic inclusions.

Another algorithm based on projections on three planes was proposed and
successfully tested by Volkov in [261].

Note that algorithms similar to those proposed in this chapter can be
designed in the context of the full time-harmonic Maxwell equations.

13.1 Asymptotic Expansion of a Weighted Combination
of Voltage-to-Current Pairs

According to (12.27) the following asymptotic formula holds uniformly on ∂Ω:

H. Ammari and H. Kang: LNM 1846, pp. 207–214, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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∂u

∂ν
(x) =

∂U

∂ν
(x) + δ3

m∑

s=1

[

∇y
∂Gk0(x, zs)

∂νx
·M s∇U(zs)

+k2
0(
εs

ε0
− 1)

∂Gk0(x, zs)
∂νx

|Bs|U(zs)
]

+O(δ4) ,

(13.1)

where the remainderO(δ4) is independent of the set of points {zs}m
s=1 provided

that the inclusions are well-separated from each other and from the boundary,
and M s is a the polarization tensor of Pólya–Szegö, associated with the s-th
inclusion Bs and the conductivity µs/µ0.

Let H(x/|x|, θ, k0) be defined as the function satisfying

−SΩ(
∂u

∂ν
|∂Ω(y))(x) + DΩ(eik0θ·y|∂Ω)(x) = H(

x

|x| , θ, k0)
eik|x|

4π|x| +O

(
1

|x|2

)

as |x| → ∞. Note that H(x/|x|, θ, k0) is directly computed from the current-to
voltage pairs (eik0θ·y|∂Ω, ∂u/∂ν|∂Ω). The following asymptotic formula holds
uniformly on x̂ = x/|x| and θ.

Theorem 13.1 We have

H(x̂, θ, k0)

= δ3k2
0

m∑

s=1

[

x̂ ·M s · θ + (
εs

ε0
− 1)|Bs|

]

eik0(θ−x̂)·zs +O(δ4) ,
(13.2)

for any x̂ and θ ∈ S2, where O(δ4) is independent of the set of points {zs}m
s=1.

Proof. It immediately follows from (13.1) that

− SΩ(
∂u

∂ν
|∂Ω) + DΩ(u|∂Ω)

= −SΩ(
∂U

∂ν
|∂Ω) + DΩ(U |∂Ω) − δ3

m∑

s=1

[

∇ySΩ(
∂Gk0(., zs)

∂ν
) ·M s∇U(zs)

+ k2
0(
εs

ε0
− 1)SΩ(

∂Gk0(., zs)
∂ν

)|Bs|U(zs)
]

+O(
δ4

|x| ) .

By (11.19) we have

SΩ(
∂Gk0(., y)

∂ν
)(x) = Γk0(x− y) , ∀ x ∈ IR3 \Ω , ∀ y ∈ Ω .

Combining this relation with the following easy-to-check fact

−SΩ(
∂U

∂ν
|∂Ω)(x) + DΩ(U |∂Ω)(x) = 0, ∀ x ∈ IR3 \Ω ,

we readily get that for x ∈ IR3 \Ω
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−SΩ(
∂u

∂ν
|∂Ω)(x) + DΩ(u|∂Ω)(x) = −δ3

m∑

s=1

[

∇yΓk0(x− zs) ·M s∇U(zs)

+k2
0(
εs

ε0
− 1)Γk0(x− zs)|Bs|U(zs)

]

+O(
δ4

|x| ) .

Since

Γk0(x− zs) = −e
ik0|x|

|x|
e−ik0

x
|x| ·zs

4π
+O(

1
|x|2 )

and

∇yΓk0(x− zs) =
eik0|x|

|x|
ik0x

4π|x|e
−ik0

x
|x| ·zs +O(

1
|x|2 ) ,

as |x| → ∞, we obtain the desired asymptotic formula (13.2) which holds
uniformly on x̂ = x/|x| and θ in S2. ��

In the following section we develop an algorithm for reconstructing the lo-
cations and order of magnitude of the inclusions from the function H(x̂, θ, k0)
at fixed k0.

13.2 Reconstruction of Multiple Inclusions

13.2.1 The Fourier Transform Algorithm

In this subsection we present a linear method to determine the locations and
the polarization tensors of several small inclusions from limited voltage-to-
current pairs. Based on the asymptotic expansion (13.2) we reduce the re-
construction of the small electromagnetic inclusions from limited voltage-to-
current pairs to the calculation of an inverse Fourier transform. This method
follows the lines of the method proposed in [16] for reconstructing a collection
of small inclusions from their scattering amplitude at a fixed frequency.

For convenience we are going to assume that Bs, for s = 1, . . . ,m, are
balls. In this case, according to (3.22) the polarization tensors M s have the
following explicit forms:

M s = msI3 ,

where I3 is the 3 × 3 identity matrix and the scalars ms are given by

ms = 3|Bs|
µs − µ0

µs + 2µ0
.

We are in possession of H(x̂l, θl′ , k0) for a collection of pairs (x̂l, θl′), where
l = 1, . . . , L and l′ = 1, . . . , L′. Let, for x̂, θ ∈ S2,

g(x̂, θ) := δ3k2
0

m∑

s=1

eik0(θ−x̂)·zs

[

msx̂ · θ + (
εs

ε0
− 1)|Bs|

]

.

We first observe that
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g(x̂, θ) = g(−θ,−x̂) , ∀ x̂, θ ∈ S2 .

Define, for l = 1, . . . , L and l′ = 1, . . . , L′, the coefficients al,l′ by

al,l′ = H(x̂l, θl′ , k0) .

The reconstruction procedure is divided into three steps.

Step 1: Given that
g(x̂l, θl′) ≈ al,l′ ,

we can compute using the Fast Fourier Transform (FFT) an accurate
approximation of g(x̂, θ) on S2 × S2.

Step 2: Let M denote the following complex variety

M =
{

ξ ∈ C3, ξ · ξ = 1
}

.

It is easy to see that g(x̂, θ) has an analytic continuation to M×M. Let
(Yp,q)−p≤q≤p,p=0,1,... denote the normalized (in L2(S2)) spherical harmon-
ics. Denote by gp,q the Fourier coefficients of g

g(x̂, θ) =
∑

p,q

gp,q(x̂)Yp,q(θ) , ∀ x̂, θ ∈ S2 . (13.3)

Recall that from Step 1 we are in fact in possession of an accurate ap-
proximation of gp,q(x̂) on S2 for −p ≤ q ≤ p and p ≤ P for some P . In
view of (13.3), the analytic continuation of the truncated Fourier series

∑

p,q;p≤P

gp,q(x̂)Yp,q(θ)

of g(x̂, θ) on M × M can be obtained by using the standard analytic
continuation of the spherical harmonics (Yp,q(θ))p,q on the complex variety
M followed by other analytic continuation of the Fourier expansion in x̂.
We know that the analytic continuation of g defined from S2 × S2 to
M×M is unique. In fact, M is a two dimensional complex variety and
S2 is a totally real two dimensional real sub-manifold of M. Thus an
analytic function which vanishes on S2 must be 0, see for example [43].

Step 3: Recalling that given al,l′ for l = 1, . . . , L and l′ = 1, . . . , L′ we have
constructed by Step 1 and Step 2 an accurate approximation of the func-
tion g(x̂, θ) that is analytic on M×M and is such that

g(x̂l, θl′) ≈ al,l′ , ∀ l = 1, . . . L and l′ = 1, . . . , L′ .

But for any ξ ∈ IR3 we know that there exists ξ1 and ξ2 in M such that
ξ = (ξ1 − ξ2)/k0. It suffices to choose

ξ1 =
ξ

2k0
+ rζ + iη, ξ2 = − ξ

2k0
+ rζ + iη
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with r ∈ IR and ζ, η ∈ IR3 such that

ξ · ζ = ξ · η = ζ · η = 0, |ζ| = 1

and

|η|2 =
|ξ|2
4k2

0

+ r2 − 1 .

Let us now view (al,l′) as a function of ξ ∈ IR3. We have

g(ξ1, ξ2) = δ3k2
0

m∑

s=1

e−iξ·zs

[

msξ1 · ξ2 + (
εs

ε0
− 1)|Bs|

]

,

and since
ξ1 · ξ2 = 1 − 1

2k2
0

|ξ|2 ,

we can rewrite g as follows

g(ξ1, ξ2) = δ3k2
0 |Bs|

m∑

s=1

e−iξ·zs

[
3(µs − µ0)
µs + 2µ0

(1 − 1
2k2

0

|ξ|2) + (
εs

ε0
− 1)

]

.

(13.4)
Define

E(ξ) = g(ξ1, ξ2) ,

and note that we are now in possession of an approximation to E(ξ) for
any ξ ∈ IR3. Here we rely on the fact that the analytic continuation is
unique.
Recall that e−iξ·zs (up to a multiplicative constant) is exactly the Fourier
transform of the Dirac function δzs (a point mass located at zs). Multipli-
cation by powers of ξ in Fourier space corresponds to differentiation of the
Dirac function. Therefore, using the inverse Fourier transform we obtain

Ě =
m∑

s=1

δ3Lsδzs ,

where Ls are, in view of (13.4), second-order constant coefficient differen-
tial operators.

Hence E(ξ) is the Fourier transform of a distribution with its support at the
locations of the centers of inclusions zs. Therefore, we think that a discrete
inverse Fourier transform of a sample of E(ξ) will efficiently pin down the
zs’s. The method of locating the points zs is then similar to that proposed
for the conductivity problem in Sect. 5.4. Recall that the number of data
(sampling) points needed for an accurate discrete Fourier inversion of E(ξ)
follows from the Shannon’s sampling theorem . We need (conservatively) of
order (h/δ)3 sampled values of ξ to reconstruct, with resolution of order δ, a
collection of inclusions that lie inside a square of side h. Note, however, that
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real measurements are only taken in Step 1. It remains to be seen how many
such measurements are needed. Once the locations {zs}m

s=1 are known we may
calculate |Bs| by solving the appropriate linear system arising from (13.4).

If Bs are general domains our calculations become more complex and
eventually we have to deal with pseudo-differential operators (independent
of the space variable x) applied to the same Dirac functions. The feasibility
of this approach is illustrated in the following numerical examples from [146].

Fig. 13.1. Reconstruction of five electromagnetic inclusions of the shape of balls in
[−10, 10]3.

Fig. 13.2. Reconstruction of five electromagnetic inclusions with 10% noise.
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13.2.2 The MUSIC Algorithm

Following Cheney [77] we briefly present the MUSIC algorithm. This is essen-
tially a method of characterizing the range of a self-adjoint operator. Suppose
A is a self-adjoint operator with eigenvalues λ1 ≥ λ2 ≥ . . . and corresponding
eigenvectors v1, v2, . . .. Suppose the eigenvalues λn+1, λn+2, . . . are all zero,
so that the vectors vn+1, vn+2, . . . span the null space of A. Alternatively,
λn+1, λn+2, . . . could merely be very small, below the noise level of the system
represented by A; in this case we say that the vectors vn+1, vn+2, . . . span the
noise subspace of A. We can form the projection onto the noise subspace; this
projection is given explicitly by Pnoise =

∑
p>n vpvp

T , where the subscript
T denotes the transpose and the bar denotes the complex conjugate. The
(essential) range of A, meanwhile, is spanned by the vectors v1, v2, . . . , vn.

The key idea of MUSIC is this: because A is self-adjoint, we know that
the noise subspace is orthogonal to the (essential) range. Therefore, a vector
f is in the range of A if and only if its projection onto the noise subspace is
zero, i.e., if ||Pnoisef || = 0, or equivalently,

1
||Pnoisef ||

= +∞ . (13.5)

Equation (13.5) is the MUSIC characterization of the range of A. If A is not
self-adjoint, MUSIC can be used with the singular-value decomposition (SVD)
instead of the eigenvalue decomposition.

MUSIC is generally used in signal processing problems [251] as a method
for estimating the individual frequencies of multiple time-harmonic signals.
Devaney [99] has recently applied the MUSIC algorithm to the problem of
estimating the locations of a number of point-like scatterers. See also [61] and
[74].

In this subsection we apply the MUSIC algorithm to determine the loca-
tions of several small inclusions from limited voltage-to-current pairs.

Let (θ1, . . . , θn) and (x̂1, . . . , x̂n) ∈ (S2)n be n directions of incidence and
observation, respectively. Our inverse problem is to determine the locations
z1, . . . , zm from H(x̂l, θl′ , k0).

Defining the matrix A = (All′)n
l,l′=1 ∈ Cn×n by

All′ =
m∑

s=1

(

− θlM
sθl′ + (

εs

ε0
− 1)|Bs|

)

eik0(θl+θl′)·zs , l, l′ = 1, . . . , n ,

we observe that

δ−3k−2
0 H(x̂l, θl′ , k0)

∣
∣
∣
∣
x̂l=−θl

� All′ .

Introduce the notation

vs =
(

(1, θ1)T eik0θ1·zs , . . . , (1, θn)T eik0θn·zs

)T
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to rewrite the matrix A as a sum of outer products:

A =
m∑

s=1

vs




(
εs

ε0
− 1)|Bs| 0

0 M s



 vT
s .

Our matrix A, called the multi-static response matrix, is symmetric, but
it is not Hermitian. We form a Hermitian matrix Ã = AA. We note that A is
the frequency-domain version of a time-reversed multi-static response matrix;
thus Ã corresponds to performing an experiment, time-reversing the received
signals and using them as input for a second experiment [201, 233, 234, 61].
The matrix Ã can be written as follows

Ã =
m∑

s=1

vs




(
εs

ε0
− 1)|Bs| 0

0 M s



 vs
T

m∑

s=1

vs




(
εs

ε0
− 1)|Bs| 0

0 M s



 vT
s .

For simplicity we consider only the case n > 3m. For any point z ∈ Ω we
define gz by

gz =
(

(1, θ1)T eik0θ1·z, . . . , (1, θn)T eik0θn·z
)T

.

It can be shown that there exists n0 ∈ IN such that for any n ≥ n0 the
following statement holds [178, 146, 15]

gz ∈ Range(Ã) if and only if z ∈ {z1, . . . , zm} .

The MUSIC algorithm can now be used as follows to determine the location
of the inclusions. Let Pnoise = I − P , where P is the orthogonal projection
onto the range of Ã. Given any point z ∈ Ω, form the vector gz. The point z
coincides with the location of an inclusion if and only if Pnoisegz = 0. Thus we
can form an image of the inclusions by plotting, at each point z, the quantity
1/||Pnoisegz||. The resulting plot will have large peaks at the locations of the
inclusions.

As pointed out the eigenvectors of the Hermitian matrix Ã can be com-
puted by the SVD of the response matrix A. The eigenvalues of Ã are the
squares of the singular values of A. An immediate application of the SVD of
A is the determination of the number of inclusions. If, for example, µs �= µ0

and εs �= ε0 for all s = 1, . . . ,m, then there are exactly 3m significant singular
values of A and the rest are zero or close to zero. If therefore the SVD of A has
no significant singular values, then there are no detectable inclusions in the
medium. Now, when there are detectable inclusions in the medium, we can use
the singular vectors of A to locate them since these vectors span the range of
Ã. We have, in fact, a one-to-one correspondence between the singular vectors
and the inclusions [233, 235].
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Appendices

A.1 Theorem of Coifman, McIntosh, and Meyer

The proof of Theorem 2.4 is based on the following celebrated theorem of
Coifman, McIntosh, and Meyer [87].

Theorem A.1 Let A,ϕ be Lipschitz functions on IRd−1. The singular integral
operator with the integral kernel

A(x′) − A(y′)

(|x′ − y′|2 + (ϕ(x′) − ϕ(y′))2)
d
2

is bounded on L2(IRd−1).

Theorem A.1 was proved by reducing the matter to the one dimension
using the method of rotation of Calderón, and then by using the following
general theorem obtained in the same paper.

Theorem A.2 Let K be a compact convex subset in the complex plane, U be
an open set containing K, and F : U → C be a holomorphic function. Let A
and B be Lipschitz functions on IR such that

A(x) −A(y)
x− y

∈ K .

Then the principal value operator defined by the kernel

B(x) −B(y)
(x− y)2

F

(
A(x) −A(y)

x− y

)

is bounded on L2(IR).

The L2-boundedness of the operators KD and K∗
D in Theorem 2.4 follows

immediately from Theorem A.1. In order to keep the technicalities to the

H. Ammari and H. Kang: LNM 1846, pp. 215–221, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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minimum, we suppose that d ≥ 3, and the domain D is given by a Lipschitz
graph, namely, D = {(x′, xd) : xd = ϕ(x′)}, where ϕ : IRd−1 → IR is a
Lipschitz function. If x = (x′, xd), y = (y′, yd), then KD is the principle value
operator with the kernel

1
ωd

ϕ(y′) − ϕ(x′) − 〈y′ − x′,∇ϕ(y′)〉
(|x′ − y′|2 + (ϕ(x′) − ϕ(y′))2)

d
2
,

and K∗
D is the principle value operator with the kernel

1
ωd

(ϕ(x′) − ϕ(y′) − 〈x′ − y′,∇ϕ(x′)〉)
√

1 + |∇ϕ(y′)|2

(|x′ − y′|2 + (ϕ(x′) − ϕ(y′))2)
d
2
√

1 + |∇ϕ(x′)|2
.

From Theorem A.1 (with first A(x′) = x′, then A(x′) = ϕ(x′)) and the bound-
edness of ∇ϕ(x′) we conclude that KD is a bounded operator on L2(∂D).

The integral kernel for the same operator KD for the Lamé system involves
terms defined by

(x′j − y′j)
2(x′k − y′k)

|x′ − y′|d+2
.

The L2-boundedness of such operators can be proved in a similar way using
the method of rotation and Theorem A.2.

A.2 Continuity Method

Theorem A.3 For 0 ≤ t ≤ 1 suppose that the family of operators At :
L2(IRd−1) → L2(IRd−1) satisfy

(i) ||Atφ||L2(IRd−1) ≥ C||φ||L2(IRd−1), where C is independent of t,
(ii) t 	→ At is continuous in norm,
(iii) A0 : L2(IRd−1) → L2(IRd−1) is invertible.

Then, A1 : L2(IRd−1) → L2(IRd−1) is invertible.

We give a brief proof for the readers’ sake. Let

T :=
{

t ∈ [0, 1] : At is invertible on L2(IRd−1)
}

.

Then T is nonempty by (iii). We can infer from (ii) that T is an open subset
of [0, 1]. To prove that T is closed, choose a sequence tj , j = 1, 2, . . ., from T

and assume that tj converges to t0 as j → ∞. For a given g ∈ L2(IRd−1) let
fj be such that Atjfj = g. Then by (i) there is a subsequence of fj , which is
still denoted by fj, converging weakly to, say, f0. We claim that At0f0 = g.
In fact, if h ∈ L2(IRd−1), then

〈At0f0 − g, h〉 = 〈At0(f0 − fj)g, h〉 + 〈(At0 −Atj )fj, h〉
= 〈(f0 − fj)g,A∗

t0h〉 + 〈(At0 −Atj )fj, h〉 → 0 as j → ∞ .
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A.3 Collectively Compact Operators

Let {Kn}+∞
n=1 be a sequence of bounded, linear operators of a Banach space

B (into itself). We say that the family of operators {Kn}+∞
n=1 is collectively

compact iff the set {Kn(x) : n ≥ 1, ||x|| ≤ 1} is relatively compact (its closure
is compact) in B. The following result is the first assertion in Theorem 4.3 in
[35].

Theorem A.4 Let K and Kn, n ≥ 1, be bounded, linear operators of a Ba-
nach space B. Assume that Kn → K, pointwise, and that {Kn − K}+∞

n=1 is
collectively compact. For any scalar, λ, the following two statements are equiv-
alent

(i) λI −K is an isomorphism.
(ii) There exists N such that λI −Kn is an isomorphism for n ≥ N, and the

set {(λI −Kn)−1 : n ≥ N} is norm bounded.

A.4 Uniqueness for the Inverse Conductivity Problem

Let Ω be a simply connected Lipschitz domain in IRd, d ≥ 2, and let D be a
compact subdomain of Ω. Let g ∈ L2

0(∂Ω). Fix 0 < k �= 1 < +∞ and let u
and U be the solutions of (2.37) and (2.38).

The inverse conductivity problem is to find D (and k) given f = u|∂Ω

for one g (one boundary measurement) or for all g (many boundary measure-
ments). In many applied situations it is f that is prescribed on ∂Ω and g
that is measured on ∂Ω. This makes some difference (not significant theoret-
ically and computationally) in the case of single boundary measurements but
makes almost no difference in the case of many boundary measurements, since
actually it is the set of Cauchy data {f, g} that is given.

A.4.1 Uniqueness With Many Measurements

Our purpose here is to state and prove a special case of the general uniqueness
result due to Isakov [156]. We will need the following lemma which was first
obtained in [172].

Lemma A.5 Let u and U be as in Lemma 2.21. Then there are positive
constants C1 and C2 depending only on k such that

C1

∣
∣
∣
∣

∫

∂Ω

(U − u)g dσ
∣
∣
∣
∣ ≤
∫

D

|∇U |2 dx ≤ C2

∣
∣
∣
∣

∫

∂Ω

(U − u)g dσ
∣
∣
∣
∣ . (A.1)

Proof. This lemma is a direct consequence of Lemma 2.21. Suppose first that
k > 1. It follows from (2.58) that
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∫

∂Ω

(U − u)g dσ > 0,

and hence by (2.59)
∫

∂Ω

(U − u)gdσ ≤ (k − 1)
∫

D

|∇U |2 dx .

On the other hand, using (2.58), we arrive at
∫

D

|∇U |2 dx ≤
∫

D

|∇u|2 dx +
∫

D

|∇(u− U)|2 dx ≤ k

k − 1

∫

∂Ω

(U − u)g dσ .

If k < 1, then ∫

∂Ω

(U − u)g dσ < 0,

and we can proceed in the same way to prove the claim. ��
We define the set of Cauchy data

CD,k =
{
(u|∂Ω,

∂u

∂ν
|∂Ω) : u ∈ W 1,2(Ω), ∆u = 0 in (Ω\D)∪D, ∂u

∂ν
|+ = k

∂u

∂ν
|−
}
.

In fact, CD,k is a graph, namely

CD,k =
{
(f, Λ(f)) ∈ W 2

1
2
(∂Ω) ×W 2

− 1
2
(∂Ω)

}
,

where Λ(f) = ∂u/∂ν|∂Ω with u ∈W 1,2(Ω) the solution of





∇ ·
(

1 + (k − 1)χ(D)
)

∇u = 0 in Ω ,

u|∂Ω = f .

The operator Λ is the Dirichlet-to-Neumann map in this case.
The following theorem is a special case of the general uniqueness theorem

due to Isakov [156].

Theorem A.6 Let Ω be a Lipschitz bounded domain in IRd, d ≥ 2. Suppose
that D1 and D2 are bounded Lipschitz domains such that, for p = 1, 2, Dp ⊂ Ω
and Ω \ Dp are connected. Suppose that the conductivity of Dp is 0 < kp �=
1 < +∞, p = 1, 2. If CD1,k1 = CD2,k2 , then D1 = D2 and k1 = k2.

Proof. For a fixed but arbitrary g ∈ L2
0(∂Ω), let up, p = 1, 2, be the solution

to 




∇ ·
(

1 + (kp − 1)χ(Dp)
)

∇up = 0 in Ω ,

∂up

∂ν

∣
∣
∣
∣
∂Ω

= g ∈ L2
0(∂Ω),

∫

∂Ω

up = 0 ,
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and U be the solution to (2.38). If CD1,k1 = CD2,k2 , then u1 = u2 on ∂Ω, and
hence ∫

∂Ω

(U − u1)g dσ =
∫

∂Ω

(U − u2)g dσ .

It then follows from Lemma A.5 that
∫

D1

|∇U |2 dx ≈
∫

D2

|∇U |2 dx . (A.2)

Observe that (A.2) holds for all U ∈ W 1,2(Ω) harmonic in Ω.
Suppose that D1 �= D2 and assume that D1 is not a subset of D2 without

loss of generality. Then there is z0 ∈ ∂D1 such that z0 is away from D2. For
z /∈ D1 ∪D2 let Γz(x) := Γ (x − z) where Γ is the fundamental solution for
∆. Then, Γz is harmonic in a neighborhood of D1 ∪D2. Therefore, by the
Runge approximation, there is a sequence of entire harmonic functions which
converges uniformly on D1 ∪D2 to Γz(x). It then follows from (A.2) that

∫

D1

|∇Γz |2 dx ≈
∫

D2

|∇Γz |2 dx , (A.3)

regardless of z. As z → z0, the left-hand side of (A.3) goes to ∞ while the
right-hand side stays bounded since z0 is away from D2. This contradiction
forces us to conclude that D1 = D2.

Let g ∈ L2
0(∂Ω) be nontrivial. Let f = u1 = u2 on ∂Ω and λp =

(kp + 1)/(2(kp − 1)), p = 1, 2. Let H = −SΩf + DΩg in IRd \ ∂Ω. By the
representation formula (2.39), it follows that for p = 1, 2,

up = H + SDp(λpI −K∗
Dp

)−1(
∂H

∂ν

∣
∣
∣
∣
∂Dp

) in Ω .

Then

SD1(λ1I −K∗
D1

)−1(
∂H

∂ν

∣
∣
∣
∣
∂D1

) = SD1(λ2I −K∗
D1

)−1(
∂H

∂ν

∣
∣
∣
∣
∂D1

) in Ω .

Consequently, we can see that ∂u1/∂ν|± = ∂u2/∂ν|± on ∂D1(= ∂D2) and
thus

(k1 − k2)
∂u1

∂ν

∣
∣
∣
∣
−

= 0 on ∂D1 .

It then suffices to prove that ∂u1/∂ν is not identically zero on ∂D1. Suppose
that ∂u1/∂ν ≡ 0 on ∂D1. From the uniqueness of a solution to the Neumann
problem, it follows that u1 is constant in D and hence

∂u1/∂ν|+ = ∂u1/∂ν|− = 0 on ∂D1 .

Therefore

(λ1I −K∗
D1

)−1(
∂H

∂ν

∣
∣
∣
∣
∂D1

) = 0 ,

which implies that ∂H/∂ν = 0 on ∂D1 and so the harmonic function H is
constant everywhere in Ω. This leads us to a contradiction. ��
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A.4.2 Uniqueness of Disks With One Measurement

Let Ω be a simply connected Lipschitz domain in IRd and let Dp, p = 1, 2, be
compact subdomains of Ω. Fix 0 < k �= 1 < +∞ and let up, p = 1, 2 be the
solutions of 





∇ ·
(

1 + (k − 1)χ(Dp)
)

∇up = 0 in Ω ,

∂up

∂ν

∣
∣
∣
∣
∂Ω

= g ∈ L2
0(∂Ω),

∫

∂Ω

up = 0 .
(A.4)

The uniqueness question here is whether from u1 = u2 on ∂Ω for a certain g,
it follows that D1 = D2. This question has been studied extensively recently.
However, it is still wide open. The global uniqueness results are only obtained
when D is restricted to convex polyhedrons and balls in three-dimensional
space and polygons and disks in the plane (see [48, 46, 122, 159, 242, 169, 170]).
Even the uniqueness within the classes of ellipses and ellipsoids is not known.
We give here a proof due to Kang and Seo [168] for the unique determination
of disks with one measurement.

Theorem A.7 Let Ω be a simply connected Lipschitz domain in IRd and let
D1 and D2 be two disks compactly contained in Ω. For any nonzero g ∈
L2

0(∂Ω) if u1 = u2 on ∂Ω then D1 = D2.

Proof. Let f = u1 = u2 on ∂Ω and λ = (k + 1)/(2(k − 1)). Let H =
−SΩf+DΩg in IR2 \∂Ω. By the representation formula (2.39), it follows that
for p = 1, 2,

up = H +
1
λ
SDp(

∂H

∂ν

∣
∣
∣
∣
∂Dp

) in Ω .

(i) The monotone case: Assume that D1 ⊂ D2. Then u1 = u2 on ∂Ω implies
∫

Ω

(1 + (k − 1)χ(D1))∇u1 · ∇η =
∫

Ω

(1 + (k − 1)χ(D2))∇u2 · ∇η ,

and hence for all η ∈W 1,2(Ω),
∫

Ω

(1 + (k − 1)χ(D1))∇(u1 − u2) · ∇η = (k − 1)
∫

D2\D1

∇u2 · ∇η . (A.5)

Consequently, substituting η = u1 and η = u1 − u2 in (A.5), we obtain
∫

Ω

(1 + (k − 1)χ(D1))|∇(u1 − u2)|2 + (k − 1)
∫

D2\D1

|∇u2|2 = 0 .

Here we have used the fact that
∫

Ω

(1 + (k − 1)χ(D1))∇(u1 − u2) · ∇U = 0 .

So, if k > 1 then u1 = u2 in Ω and therefore by the transmission condition
we conclude that D1 = D2 since otherwise u1 = u2 ≡ 0 in Ω. If 0 < k < 1
we interchange the roles of D1 and D2 to arrive at the same conclusion.
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(ii) The disjoint case: If D1 and D2 are disjoint, then

SD1(
∂H

∂ν

∣
∣
∣
∣
∂D1

) = SD2(
∂H

∂ν

∣
∣
∣
∣
∂D2

) in IR2 \D1 ∪D2

implies that SD1 (
∂H
∂ν |∂D1) is harmonic on IR2 and hence ∂H/∂ν = 0 on

∂D1 and H is a constant function which is a contradiction.
(iii) The non-monotone case: Recall that if Dp is a disk then K∗

Dp
≡ 0 on

L2
0(∂Dp). From u1 = u2 on ∂Ω it follows by using the representation

formula (2.39) that

SD1(
∂H

∂ν

∣
∣
∣
∣
∂D1

) = SD2 (
∂H

∂ν

∣
∣
∣
∣
∂D2

) in IR2 \D1 ∪D2 .

Assume that none of D1 and D2 contains the other. Assume that D1 and
D2 are not disjoint. Since

∂

∂ν
SDp(

∂H

∂ν

∣
∣
∣
∣
Dp

)
∣
∣
∣
∣
−

= −1
2
∂H

∂ν

∣
∣
∣
∣
Dp

on ∂Dp , p = 1, 2 ,

it follows from the uniqueness of a solution to the Neumann boundary
value problem for the Laplacian that

SDp(
∂H

∂ν

∣
∣
∣
∣
Dp

) = −1
2
H + cp in Dp

for some constant cp. Hence

SD1(
∂H

∂ν

∣
∣
∣
∣
D1

) = SD2(
∂H

∂ν

∣
∣
∣
∣
D2

) + constant in D1 ∩D2 .

Since

SD1(
∂H

∂ν

∣
∣
∣
∣
D1

) = SD2(
∂H

∂ν

∣
∣
∣
∣
D2

) in IR2 \D1 ∪D2 ,

we get by the continuity of the single layer potential that

SD1(
∂H

∂ν

∣
∣
∣
∣
D1

) = SD2(
∂H

∂ν

∣
∣
∣
∣
D2

) in D1 ∩D2 .

Hence

SD1(
∂H

∂ν

∣
∣
∣
∣
D1

) = SD2(
∂H

∂ν

∣
∣
∣
∣
D2

) on ∂(D1 \D2) ∪ ∂(D2 \D1) ,

and by the maximum principle

SD1(
∂H

∂ν

∣
∣
∣
∣
D1

) = SD2(
∂H

∂ν

∣
∣
∣
∣
D2

) in IR2 .

Therefore SD1(∂H/∂ν|D1) is a harmonic function in the entire domain
IR2, and so ∂H/∂ν = 0 on ∂D1 and H is a constant function which is a
contradiction. ��

Note that in the monotone case global uniqueness holds for general domains
[47, 2].
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44. L. Baratchart, J. Leblond, F. Mandréa, and E.B. Saff, How can the meromor-
phic approximation help to solve some 2D inverse problems for the Laplacian
?, Inverse Problems, 15 (1999), 79–90.

45. D.C. Barber and B.H. Brown, Applied potential tomography, J. Phys. Sci.
Instrum., 17 (1984), 723–733.

46. B. Barcelo, E. Fabes, and J.K. Seo, The inverse conductivity problem with one
measurement, uniqueness for convex polyhedra, Proc. Amer. Math. Soc., 122
(1994), 183–189.

47. H. Bellout and A. Friedman, Identification problems in potential theory, Arch.
Rational Mech. Anal., 101 (1988), 143–160.

48. H. Bellout, A. Friedman, and V. Isakov, Stability for an inverse problem in
potential theory, Trans. Amer. Math. Soc., 332 (1992), 271–296.

49. F. Ben Hassen and E. Bonnetier, Asymptotic formulas for the voltage potential
in a composite medium containing close or touching disks of small diameter,
preprint, 2003.

50. J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J.L. Gen-
nisson, and M. Meunier, In vivo breast tumor detection using transient elas-
tography, Ultrasound in Med. Bio., 29 (2003), 1387–1396.

51. E. Beretta and E. Francini, Asymptotic formulas for perturbations in the elec-
tromagnetic fields due to the presence of thin inhomogeneities in Inverse Prob-
lems: Theory and Applications, 49–63, Contemp. Math., 333, Amer. Math.
Soc., Providence, RI, 2003.



226 References

52. E. Beretta, E. Francini, and M.S. Vogelius, Asymptotic formulas for steady
state voltage potentials in the presence of thin inhomogeneities. A rigorous
error analysis, J. Math. Pures Appl., 82 (2003), 1277–1301.

53. E. Beretta, A. Mukherjee, and M.S. Vogelius, Asymptotic formuli for steady
state voltage potentials in the presence of conductivity imperfections of small
area, Z. Angew. Math. Phys., 52 (2001), 543–572.

54. P.M. van den Berg and R.E. Kleinman, A total variation enhanced modified
gradient algorithm for profile reconstruction, Inverse Problems, 11 (1995), L5–
L10.
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